jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/cjs/function/statistics/cumsum.js
2025-01-02 11:13:50 +08:00

129 lines
4.2 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createCumSum = void 0;
var _collection = require("../../utils/collection.js");
var _factory = require("../../utils/factory.js");
var _switch2 = require("../../utils/switch.js");
var _improveErrorMessage = require("./utils/improveErrorMessage.js");
var _array = require("../../utils/array.js");
var _IndexError = require("../../error/IndexError.js");
const name = 'cumsum';
const dependencies = ['typed', 'add', 'unaryPlus'];
const createCumSum = exports.createCumSum = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
add,
unaryPlus
} = _ref;
/**
* Compute the cumulative sum of a matrix or a list with values.
* In case of a (multi dimensional) array or matrix, the cumulative sums
* along a specified dimension (defaulting to the first) will be calculated.
*
* Syntax:
*
* math.cumsum(a, b, c, ...)
* math.cumsum(A)
*
* Examples:
*
* math.cumsum(2, 1, 4, 3) // returns [2, 3, 7, 10]
* math.cumsum([2, 1, 4, 3]) // returns [2, 3, 7, 10]
* math.cumsum([[1, 2], [3, 4]]) // returns [[1, 2], [4, 6]]
* math.cumsum([[1, 2], [3, 4]], 0) // returns [[1, 2], [4, 6]]
* math.cumsum([[1, 2], [3, 4]], 1) // returns [[1, 3], [3, 7]]
* math.cumsum([[2, 5], [4, 3], [1, 7]]) // returns [[2, 5], [6, 8], [7, 15]]
*
* See also:
*
* mean, median, min, max, prod, std, variance, sum
*
* @param {... *} args A single matrix or or multiple scalar values
* @return {*} The cumulative sum of all values
*/
return typed(name, {
// sum([a, b, c, d, ...])
Array: _cumsum,
Matrix: function (matrix) {
return matrix.create(_cumsum(matrix.valueOf(), matrix.datatype()));
},
// sum([a, b, c, d, ...], dim)
'Array, number | BigNumber': _ncumSumDim,
'Matrix, number | BigNumber': function (matrix, dim) {
return matrix.create(_ncumSumDim(matrix.valueOf(), dim), matrix.datatype());
},
// cumsum(a, b, c, d, ...)
'...': function (args) {
if ((0, _collection.containsCollections)(args)) {
throw new TypeError('All values expected to be scalar in function cumsum');
}
return _cumsum(args);
}
});
/**
* Recursively calculate the cumulative sum of an n-dimensional array
* @param {Array} array
* @return {number} cumsum
* @private
*/
function _cumsum(array) {
try {
return _cumsummap(array);
} catch (err) {
throw (0, _improveErrorMessage.improveErrorMessage)(err, name);
}
}
function _cumsummap(array) {
if (array.length === 0) {
return [];
}
const sums = [unaryPlus(array[0])]; // unaryPlus converts to number if need be
for (let i = 1; i < array.length; ++i) {
// Must use add below and not addScalar for the case of summing a
// 2+-dimensional array along the 0th dimension (the row vectors,
// or higher-d analogues, are literally added to each other).
sums.push(add(sums[i - 1], array[i]));
}
return sums;
}
function _ncumSumDim(array, dim) {
const size = (0, _array.arraySize)(array);
if (dim < 0 || dim >= size.length) {
// TODO: would be more clear when throwing a DimensionError here
throw new _IndexError.IndexError(dim, size.length);
}
try {
return _cumsumDimensional(array, dim);
} catch (err) {
throw (0, _improveErrorMessage.improveErrorMessage)(err, name);
}
}
/* Possible TODO: Refactor _reduce in collection.js to be able to work here as well */
function _cumsumDimensional(mat, dim) {
let i, ret, tran;
if (dim <= 0) {
const initialValue = mat[0][0];
if (!Array.isArray(initialValue)) {
return _cumsummap(mat);
} else {
tran = (0, _switch2._switch)(mat);
ret = [];
for (i = 0; i < tran.length; i++) {
ret[i] = _cumsumDimensional(tran[i], dim - 1);
}
return ret;
}
} else {
ret = [];
for (i = 0; i < mat.length; i++) {
ret[i] = _cumsumDimensional(mat[i], dim - 1);
}
return ret;
}
}
});