289 lines
11 KiB
JavaScript
289 lines
11 KiB
JavaScript
"use strict";
|
||
|
||
Object.defineProperty(exports, "__esModule", {
|
||
value: true
|
||
});
|
||
exports.createSolveODE = void 0;
|
||
var _is = require("../../utils/is.js");
|
||
var _factory = require("../../utils/factory.js");
|
||
const name = 'solveODE';
|
||
const dependencies = ['typed', 'add', 'subtract', 'multiply', 'divide', 'max', 'map', 'abs', 'isPositive', 'isNegative', 'larger', 'smaller', 'matrix', 'bignumber', 'unaryMinus'];
|
||
const createSolveODE = exports.createSolveODE = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
|
||
let {
|
||
typed,
|
||
add,
|
||
subtract,
|
||
multiply,
|
||
divide,
|
||
max,
|
||
map,
|
||
abs,
|
||
isPositive,
|
||
isNegative,
|
||
larger,
|
||
smaller,
|
||
matrix,
|
||
bignumber,
|
||
unaryMinus
|
||
} = _ref;
|
||
/**
|
||
* Numerical Integration of Ordinary Differential Equations
|
||
*
|
||
* Two variable step methods are provided:
|
||
* - "RK23": Bogacki–Shampine method
|
||
* - "RK45": Dormand-Prince method RK5(4)7M (default)
|
||
*
|
||
* The arguments are expected as follows.
|
||
*
|
||
* - `func` should be the forcing function `f(t, y)`
|
||
* - `tspan` should be a vector of two numbers or units `[tStart, tEnd]`
|
||
* - `y0` the initial state values, should be a scalar or a flat array
|
||
* - `options` should be an object with the following information:
|
||
* - `method` ('RK45'): ['RK23', 'RK45']
|
||
* - `tol` (1e-3): Numeric tolerance of the method, the solver keeps the error estimates less than this value
|
||
* - `firstStep`: Initial step size
|
||
* - `minStep`: minimum step size of the method
|
||
* - `maxStep`: maximum step size of the method
|
||
* - `minDelta` (0.2): minimum ratio of change for the step
|
||
* - `maxDelta` (5): maximum ratio of change for the step
|
||
* - `maxIter` (1e4): maximum number of iterations
|
||
*
|
||
* The returned value is an object with `{t, y}` please note that even though `t` means time, it can represent any other independant variable like `x`:
|
||
* - `t` an array of size `[n]`
|
||
* - `y` the states array can be in two ways
|
||
* - **if `y0` is a scalar:** returns an array-like of size `[n]`
|
||
* - **if `y0` is a flat array-like of size [m]:** returns an array like of size `[n, m]`
|
||
*
|
||
* Syntax:
|
||
*
|
||
* math.solveODE(func, tspan, y0)
|
||
* math.solveODE(func, tspan, y0, options)
|
||
*
|
||
* Examples:
|
||
*
|
||
* function func(t, y) {return y}
|
||
* const tspan = [0, 4]
|
||
* const y0 = 1
|
||
* math.solveODE(func, tspan, y0)
|
||
* math.solveODE(func, tspan, [1, 2])
|
||
* math.solveODE(func, tspan, y0, { method:"RK23", maxStep:0.1 })
|
||
*
|
||
* See also:
|
||
*
|
||
* derivative, simplifyCore
|
||
*
|
||
* @param {function} func The forcing function f(t,y)
|
||
* @param {Array | Matrix} tspan The time span
|
||
* @param {number | BigNumber | Unit | Array | Matrix} y0 The initial value
|
||
* @param {Object} [options] Optional configuration options
|
||
* @return {Object} Return an object with t and y values as arrays
|
||
*/
|
||
|
||
function _rk(butcherTableau) {
|
||
// generates an adaptive runge kutta method from it's butcher tableau
|
||
|
||
return function (f, tspan, y0, options) {
|
||
// adaptive runge kutta methods
|
||
const wrongTSpan = !(tspan.length === 2 && (tspan.every(isNumOrBig) || tspan.every(_is.isUnit)));
|
||
if (wrongTSpan) {
|
||
throw new Error('"tspan" must be an Array of two numeric values or two units [tStart, tEnd]');
|
||
}
|
||
const t0 = tspan[0]; // initial time
|
||
const tf = tspan[1]; // final time
|
||
const isForwards = larger(tf, t0);
|
||
const firstStep = options.firstStep;
|
||
if (firstStep !== undefined && !isPositive(firstStep)) {
|
||
throw new Error('"firstStep" must be positive');
|
||
}
|
||
const maxStep = options.maxStep;
|
||
if (maxStep !== undefined && !isPositive(maxStep)) {
|
||
throw new Error('"maxStep" must be positive');
|
||
}
|
||
const minStep = options.minStep;
|
||
if (minStep && isNegative(minStep)) {
|
||
throw new Error('"minStep" must be positive or zero');
|
||
}
|
||
const timeVars = [t0, tf, firstStep, minStep, maxStep].filter(x => x !== undefined);
|
||
if (!(timeVars.every(isNumOrBig) || timeVars.every(_is.isUnit))) {
|
||
throw new Error('Inconsistent type of "t" dependant variables');
|
||
}
|
||
const steps = 1; // divide time in this number of steps
|
||
const tol = options.tol ? options.tol : 1e-4; // define a tolerance (must be an option)
|
||
const minDelta = options.minDelta ? options.minDelta : 0.2;
|
||
const maxDelta = options.maxDelta ? options.maxDelta : 5;
|
||
const maxIter = options.maxIter ? options.maxIter : 10000; // stop inifite evaluation if something goes wrong
|
||
const hasBigNumbers = [t0, tf, ...y0, maxStep, minStep].some(_is.isBigNumber);
|
||
const [a, c, b, bp] = hasBigNumbers ? [bignumber(butcherTableau.a), bignumber(butcherTableau.c), bignumber(butcherTableau.b), bignumber(butcherTableau.bp)] : [butcherTableau.a, butcherTableau.c, butcherTableau.b, butcherTableau.bp];
|
||
let h = firstStep ? isForwards ? firstStep : unaryMinus(firstStep) : divide(subtract(tf, t0), steps); // define the first step size
|
||
const t = [t0]; // start the time array
|
||
const y = [y0]; // start the solution array
|
||
|
||
const deltaB = subtract(b, bp); // b - bp
|
||
|
||
let n = 0;
|
||
let iter = 0;
|
||
const ongoing = _createOngoing(isForwards);
|
||
const trimStep = _createTrimStep(isForwards);
|
||
// iterate unitil it reaches either the final time or maximum iterations
|
||
while (ongoing(t[n], tf)) {
|
||
const k = [];
|
||
|
||
// trim the time step so that it doesn't overshoot
|
||
h = trimStep(t[n], tf, h);
|
||
|
||
// calculate the first value of k
|
||
k.push(f(t[n], y[n]));
|
||
|
||
// calculate the rest of the values of k
|
||
for (let i = 1; i < c.length; ++i) {
|
||
k.push(f(add(t[n], multiply(c[i], h)), add(y[n], multiply(h, a[i], k))));
|
||
}
|
||
|
||
// estimate the error by comparing solutions of different orders
|
||
const TE = max(abs(map(multiply(deltaB, k), X => (0, _is.isUnit)(X) ? X.value : X)));
|
||
if (TE < tol && tol / TE > 1 / 4) {
|
||
// push solution if within tol
|
||
t.push(add(t[n], h));
|
||
y.push(add(y[n], multiply(h, b, k)));
|
||
n++;
|
||
}
|
||
|
||
// estimate the delta value that will affect the step size
|
||
let delta = 0.84 * (tol / TE) ** (1 / 5);
|
||
if (smaller(delta, minDelta)) {
|
||
delta = minDelta;
|
||
} else if (larger(delta, maxDelta)) {
|
||
delta = maxDelta;
|
||
}
|
||
delta = hasBigNumbers ? bignumber(delta) : delta;
|
||
h = multiply(h, delta);
|
||
if (maxStep && larger(abs(h), maxStep)) {
|
||
h = isForwards ? maxStep : unaryMinus(maxStep);
|
||
} else if (minStep && smaller(abs(h), minStep)) {
|
||
h = isForwards ? minStep : unaryMinus(minStep);
|
||
}
|
||
iter++;
|
||
if (iter > maxIter) {
|
||
throw new Error('Maximum number of iterations reached, try changing options');
|
||
}
|
||
}
|
||
return {
|
||
t,
|
||
y
|
||
};
|
||
};
|
||
}
|
||
function _rk23(f, tspan, y0, options) {
|
||
// Bogacki–Shampine method
|
||
|
||
// Define the butcher table
|
||
const a = [[], [1 / 2], [0, 3 / 4], [2 / 9, 1 / 3, 4 / 9]];
|
||
const c = [null, 1 / 2, 3 / 4, 1];
|
||
const b = [2 / 9, 1 / 3, 4 / 9, 0];
|
||
const bp = [7 / 24, 1 / 4, 1 / 3, 1 / 8];
|
||
const butcherTableau = {
|
||
a,
|
||
c,
|
||
b,
|
||
bp
|
||
};
|
||
|
||
// Solve an adaptive step size rk method
|
||
return _rk(butcherTableau)(f, tspan, y0, options);
|
||
}
|
||
function _rk45(f, tspan, y0, options) {
|
||
// Dormand Prince method
|
||
|
||
// Define the butcher tableau
|
||
const a = [[], [1 / 5], [3 / 40, 9 / 40], [44 / 45, -56 / 15, 32 / 9], [19372 / 6561, -25360 / 2187, 64448 / 6561, -212 / 729], [9017 / 3168, -355 / 33, 46732 / 5247, 49 / 176, -5103 / 18656], [35 / 384, 0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84]];
|
||
const c = [null, 1 / 5, 3 / 10, 4 / 5, 8 / 9, 1, 1];
|
||
const b = [35 / 384, 0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84, 0];
|
||
const bp = [5179 / 57600, 0, 7571 / 16695, 393 / 640, -92097 / 339200, 187 / 2100, 1 / 40];
|
||
const butcherTableau = {
|
||
a,
|
||
c,
|
||
b,
|
||
bp
|
||
};
|
||
|
||
// Solve an adaptive step size rk method
|
||
return _rk(butcherTableau)(f, tspan, y0, options);
|
||
}
|
||
function _solveODE(f, tspan, y0, opt) {
|
||
const method = opt.method ? opt.method : 'RK45';
|
||
const methods = {
|
||
RK23: _rk23,
|
||
RK45: _rk45
|
||
};
|
||
if (method.toUpperCase() in methods) {
|
||
const methodOptions = {
|
||
...opt
|
||
}; // clone the options object
|
||
delete methodOptions.method; // delete the method as it won't be needed
|
||
return methods[method.toUpperCase()](f, tspan, y0, methodOptions);
|
||
} else {
|
||
// throw an error indicating there is no such method
|
||
const methodsWithQuotes = Object.keys(methods).map(x => `"${x}"`);
|
||
// generates a string of methods like: "BDF", "RK23" and "RK45"
|
||
const availableMethodsString = `${methodsWithQuotes.slice(0, -1).join(', ')} and ${methodsWithQuotes.slice(-1)}`;
|
||
throw new Error(`Unavailable method "${method}". Available methods are ${availableMethodsString}`);
|
||
}
|
||
}
|
||
function _createOngoing(isForwards) {
|
||
// returns the correct function to test if it's still iterating
|
||
return isForwards ? smaller : larger;
|
||
}
|
||
function _createTrimStep(isForwards) {
|
||
const outOfBounds = isForwards ? larger : smaller;
|
||
return function (t, tf, h) {
|
||
const next = add(t, h);
|
||
return outOfBounds(next, tf) ? subtract(tf, t) : h;
|
||
};
|
||
}
|
||
function isNumOrBig(x) {
|
||
// checks if it's a number or bignumber
|
||
return (0, _is.isBigNumber)(x) || (0, _is.isNumber)(x);
|
||
}
|
||
function _matrixSolveODE(f, T, y0, options) {
|
||
// receives matrices and returns matrices
|
||
const sol = _solveODE(f, T.toArray(), y0.toArray(), options);
|
||
return {
|
||
t: matrix(sol.t),
|
||
y: matrix(sol.y)
|
||
};
|
||
}
|
||
return typed('solveODE', {
|
||
'function, Array, Array, Object': _solveODE,
|
||
'function, Matrix, Matrix, Object': _matrixSolveODE,
|
||
'function, Array, Array': (f, T, y0) => _solveODE(f, T, y0, {}),
|
||
'function, Matrix, Matrix': (f, T, y0) => _matrixSolveODE(f, T, y0, {}),
|
||
'function, Array, number | BigNumber | Unit': (f, T, y0) => {
|
||
const sol = _solveODE(f, T, [y0], {});
|
||
return {
|
||
t: sol.t,
|
||
y: sol.y.map(Y => Y[0])
|
||
};
|
||
},
|
||
'function, Matrix, number | BigNumber | Unit': (f, T, y0) => {
|
||
const sol = _solveODE(f, T.toArray(), [y0], {});
|
||
return {
|
||
t: matrix(sol.t),
|
||
y: matrix(sol.y.map(Y => Y[0]))
|
||
};
|
||
},
|
||
'function, Array, number | BigNumber | Unit, Object': (f, T, y0, options) => {
|
||
const sol = _solveODE(f, T, [y0], options);
|
||
return {
|
||
t: sol.t,
|
||
y: sol.y.map(Y => Y[0])
|
||
};
|
||
},
|
||
'function, Matrix, number | BigNumber | Unit, Object': (f, T, y0, options) => {
|
||
const sol = _solveODE(f, T.toArray(), [y0], options);
|
||
return {
|
||
t: matrix(sol.t),
|
||
y: matrix(sol.y.map(Y => Y[0]))
|
||
};
|
||
}
|
||
});
|
||
}); |