jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/cjs/function/numeric/solveODE.js
2025-01-02 11:13:50 +08:00

289 lines
11 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createSolveODE = void 0;
var _is = require("../../utils/is.js");
var _factory = require("../../utils/factory.js");
const name = 'solveODE';
const dependencies = ['typed', 'add', 'subtract', 'multiply', 'divide', 'max', 'map', 'abs', 'isPositive', 'isNegative', 'larger', 'smaller', 'matrix', 'bignumber', 'unaryMinus'];
const createSolveODE = exports.createSolveODE = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
add,
subtract,
multiply,
divide,
max,
map,
abs,
isPositive,
isNegative,
larger,
smaller,
matrix,
bignumber,
unaryMinus
} = _ref;
/**
* Numerical Integration of Ordinary Differential Equations
*
* Two variable step methods are provided:
* - "RK23": BogackiShampine method
* - "RK45": Dormand-Prince method RK5(4)7M (default)
*
* The arguments are expected as follows.
*
* - `func` should be the forcing function `f(t, y)`
* - `tspan` should be a vector of two numbers or units `[tStart, tEnd]`
* - `y0` the initial state values, should be a scalar or a flat array
* - `options` should be an object with the following information:
* - `method` ('RK45'): ['RK23', 'RK45']
* - `tol` (1e-3): Numeric tolerance of the method, the solver keeps the error estimates less than this value
* - `firstStep`: Initial step size
* - `minStep`: minimum step size of the method
* - `maxStep`: maximum step size of the method
* - `minDelta` (0.2): minimum ratio of change for the step
* - `maxDelta` (5): maximum ratio of change for the step
* - `maxIter` (1e4): maximum number of iterations
*
* The returned value is an object with `{t, y}` please note that even though `t` means time, it can represent any other independant variable like `x`:
* - `t` an array of size `[n]`
* - `y` the states array can be in two ways
* - **if `y0` is a scalar:** returns an array-like of size `[n]`
* - **if `y0` is a flat array-like of size [m]:** returns an array like of size `[n, m]`
*
* Syntax:
*
* math.solveODE(func, tspan, y0)
* math.solveODE(func, tspan, y0, options)
*
* Examples:
*
* function func(t, y) {return y}
* const tspan = [0, 4]
* const y0 = 1
* math.solveODE(func, tspan, y0)
* math.solveODE(func, tspan, [1, 2])
* math.solveODE(func, tspan, y0, { method:"RK23", maxStep:0.1 })
*
* See also:
*
* derivative, simplifyCore
*
* @param {function} func The forcing function f(t,y)
* @param {Array | Matrix} tspan The time span
* @param {number | BigNumber | Unit | Array | Matrix} y0 The initial value
* @param {Object} [options] Optional configuration options
* @return {Object} Return an object with t and y values as arrays
*/
function _rk(butcherTableau) {
// generates an adaptive runge kutta method from it's butcher tableau
return function (f, tspan, y0, options) {
// adaptive runge kutta methods
const wrongTSpan = !(tspan.length === 2 && (tspan.every(isNumOrBig) || tspan.every(_is.isUnit)));
if (wrongTSpan) {
throw new Error('"tspan" must be an Array of two numeric values or two units [tStart, tEnd]');
}
const t0 = tspan[0]; // initial time
const tf = tspan[1]; // final time
const isForwards = larger(tf, t0);
const firstStep = options.firstStep;
if (firstStep !== undefined && !isPositive(firstStep)) {
throw new Error('"firstStep" must be positive');
}
const maxStep = options.maxStep;
if (maxStep !== undefined && !isPositive(maxStep)) {
throw new Error('"maxStep" must be positive');
}
const minStep = options.minStep;
if (minStep && isNegative(minStep)) {
throw new Error('"minStep" must be positive or zero');
}
const timeVars = [t0, tf, firstStep, minStep, maxStep].filter(x => x !== undefined);
if (!(timeVars.every(isNumOrBig) || timeVars.every(_is.isUnit))) {
throw new Error('Inconsistent type of "t" dependant variables');
}
const steps = 1; // divide time in this number of steps
const tol = options.tol ? options.tol : 1e-4; // define a tolerance (must be an option)
const minDelta = options.minDelta ? options.minDelta : 0.2;
const maxDelta = options.maxDelta ? options.maxDelta : 5;
const maxIter = options.maxIter ? options.maxIter : 10000; // stop inifite evaluation if something goes wrong
const hasBigNumbers = [t0, tf, ...y0, maxStep, minStep].some(_is.isBigNumber);
const [a, c, b, bp] = hasBigNumbers ? [bignumber(butcherTableau.a), bignumber(butcherTableau.c), bignumber(butcherTableau.b), bignumber(butcherTableau.bp)] : [butcherTableau.a, butcherTableau.c, butcherTableau.b, butcherTableau.bp];
let h = firstStep ? isForwards ? firstStep : unaryMinus(firstStep) : divide(subtract(tf, t0), steps); // define the first step size
const t = [t0]; // start the time array
const y = [y0]; // start the solution array
const deltaB = subtract(b, bp); // b - bp
let n = 0;
let iter = 0;
const ongoing = _createOngoing(isForwards);
const trimStep = _createTrimStep(isForwards);
// iterate unitil it reaches either the final time or maximum iterations
while (ongoing(t[n], tf)) {
const k = [];
// trim the time step so that it doesn't overshoot
h = trimStep(t[n], tf, h);
// calculate the first value of k
k.push(f(t[n], y[n]));
// calculate the rest of the values of k
for (let i = 1; i < c.length; ++i) {
k.push(f(add(t[n], multiply(c[i], h)), add(y[n], multiply(h, a[i], k))));
}
// estimate the error by comparing solutions of different orders
const TE = max(abs(map(multiply(deltaB, k), X => (0, _is.isUnit)(X) ? X.value : X)));
if (TE < tol && tol / TE > 1 / 4) {
// push solution if within tol
t.push(add(t[n], h));
y.push(add(y[n], multiply(h, b, k)));
n++;
}
// estimate the delta value that will affect the step size
let delta = 0.84 * (tol / TE) ** (1 / 5);
if (smaller(delta, minDelta)) {
delta = minDelta;
} else if (larger(delta, maxDelta)) {
delta = maxDelta;
}
delta = hasBigNumbers ? bignumber(delta) : delta;
h = multiply(h, delta);
if (maxStep && larger(abs(h), maxStep)) {
h = isForwards ? maxStep : unaryMinus(maxStep);
} else if (minStep && smaller(abs(h), minStep)) {
h = isForwards ? minStep : unaryMinus(minStep);
}
iter++;
if (iter > maxIter) {
throw new Error('Maximum number of iterations reached, try changing options');
}
}
return {
t,
y
};
};
}
function _rk23(f, tspan, y0, options) {
// BogackiShampine method
// Define the butcher table
const a = [[], [1 / 2], [0, 3 / 4], [2 / 9, 1 / 3, 4 / 9]];
const c = [null, 1 / 2, 3 / 4, 1];
const b = [2 / 9, 1 / 3, 4 / 9, 0];
const bp = [7 / 24, 1 / 4, 1 / 3, 1 / 8];
const butcherTableau = {
a,
c,
b,
bp
};
// Solve an adaptive step size rk method
return _rk(butcherTableau)(f, tspan, y0, options);
}
function _rk45(f, tspan, y0, options) {
// Dormand Prince method
// Define the butcher tableau
const a = [[], [1 / 5], [3 / 40, 9 / 40], [44 / 45, -56 / 15, 32 / 9], [19372 / 6561, -25360 / 2187, 64448 / 6561, -212 / 729], [9017 / 3168, -355 / 33, 46732 / 5247, 49 / 176, -5103 / 18656], [35 / 384, 0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84]];
const c = [null, 1 / 5, 3 / 10, 4 / 5, 8 / 9, 1, 1];
const b = [35 / 384, 0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84, 0];
const bp = [5179 / 57600, 0, 7571 / 16695, 393 / 640, -92097 / 339200, 187 / 2100, 1 / 40];
const butcherTableau = {
a,
c,
b,
bp
};
// Solve an adaptive step size rk method
return _rk(butcherTableau)(f, tspan, y0, options);
}
function _solveODE(f, tspan, y0, opt) {
const method = opt.method ? opt.method : 'RK45';
const methods = {
RK23: _rk23,
RK45: _rk45
};
if (method.toUpperCase() in methods) {
const methodOptions = {
...opt
}; // clone the options object
delete methodOptions.method; // delete the method as it won't be needed
return methods[method.toUpperCase()](f, tspan, y0, methodOptions);
} else {
// throw an error indicating there is no such method
const methodsWithQuotes = Object.keys(methods).map(x => `"${x}"`);
// generates a string of methods like: "BDF", "RK23" and "RK45"
const availableMethodsString = `${methodsWithQuotes.slice(0, -1).join(', ')} and ${methodsWithQuotes.slice(-1)}`;
throw new Error(`Unavailable method "${method}". Available methods are ${availableMethodsString}`);
}
}
function _createOngoing(isForwards) {
// returns the correct function to test if it's still iterating
return isForwards ? smaller : larger;
}
function _createTrimStep(isForwards) {
const outOfBounds = isForwards ? larger : smaller;
return function (t, tf, h) {
const next = add(t, h);
return outOfBounds(next, tf) ? subtract(tf, t) : h;
};
}
function isNumOrBig(x) {
// checks if it's a number or bignumber
return (0, _is.isBigNumber)(x) || (0, _is.isNumber)(x);
}
function _matrixSolveODE(f, T, y0, options) {
// receives matrices and returns matrices
const sol = _solveODE(f, T.toArray(), y0.toArray(), options);
return {
t: matrix(sol.t),
y: matrix(sol.y)
};
}
return typed('solveODE', {
'function, Array, Array, Object': _solveODE,
'function, Matrix, Matrix, Object': _matrixSolveODE,
'function, Array, Array': (f, T, y0) => _solveODE(f, T, y0, {}),
'function, Matrix, Matrix': (f, T, y0) => _matrixSolveODE(f, T, y0, {}),
'function, Array, number | BigNumber | Unit': (f, T, y0) => {
const sol = _solveODE(f, T, [y0], {});
return {
t: sol.t,
y: sol.y.map(Y => Y[0])
};
},
'function, Matrix, number | BigNumber | Unit': (f, T, y0) => {
const sol = _solveODE(f, T.toArray(), [y0], {});
return {
t: matrix(sol.t),
y: matrix(sol.y.map(Y => Y[0]))
};
},
'function, Array, number | BigNumber | Unit, Object': (f, T, y0, options) => {
const sol = _solveODE(f, T, [y0], options);
return {
t: sol.t,
y: sol.y.map(Y => Y[0])
};
},
'function, Matrix, number | BigNumber | Unit, Object': (f, T, y0, options) => {
const sol = _solveODE(f, T.toArray(), [y0], options);
return {
t: matrix(sol.t),
y: matrix(sol.y.map(Y => Y[0]))
};
}
});
});