166 lines
4.3 KiB
JavaScript
166 lines
4.3 KiB
JavaScript
"use strict";
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.createTranspose = void 0;
|
|
var _object = require("../../utils/object.js");
|
|
var _string = require("../../utils/string.js");
|
|
var _factory = require("../../utils/factory.js");
|
|
const name = 'transpose';
|
|
const dependencies = ['typed', 'matrix'];
|
|
const createTranspose = exports.createTranspose = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
|
|
let {
|
|
typed,
|
|
matrix
|
|
} = _ref;
|
|
/**
|
|
* Transpose a matrix. All values of the matrix are reflected over its
|
|
* main diagonal. Only applicable to two dimensional matrices containing
|
|
* a vector (i.e. having size `[1,n]` or `[n,1]`). One dimensional
|
|
* vectors and scalars return the input unchanged.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.transpose(x)
|
|
*
|
|
* Examples:
|
|
*
|
|
* const A = [[1, 2, 3], [4, 5, 6]]
|
|
* math.transpose(A) // returns [[1, 4], [2, 5], [3, 6]]
|
|
*
|
|
* See also:
|
|
*
|
|
* diag, inv, subset, squeeze
|
|
*
|
|
* @param {Array | Matrix} x Matrix to be transposed
|
|
* @return {Array | Matrix} The transposed matrix
|
|
*/
|
|
return typed(name, {
|
|
Array: x => transposeMatrix(matrix(x)).valueOf(),
|
|
Matrix: transposeMatrix,
|
|
any: _object.clone // scalars
|
|
});
|
|
function transposeMatrix(x) {
|
|
// matrix size
|
|
const size = x.size();
|
|
|
|
// result
|
|
let c;
|
|
|
|
// process dimensions
|
|
switch (size.length) {
|
|
case 1:
|
|
// vector
|
|
c = x.clone();
|
|
break;
|
|
case 2:
|
|
{
|
|
// rows and columns
|
|
const rows = size[0];
|
|
const columns = size[1];
|
|
|
|
// check columns
|
|
if (columns === 0) {
|
|
// throw exception
|
|
throw new RangeError('Cannot transpose a 2D matrix with no columns (size: ' + (0, _string.format)(size) + ')');
|
|
}
|
|
|
|
// process storage format
|
|
switch (x.storage()) {
|
|
case 'dense':
|
|
c = _denseTranspose(x, rows, columns);
|
|
break;
|
|
case 'sparse':
|
|
c = _sparseTranspose(x, rows, columns);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
// multi dimensional
|
|
throw new RangeError('Matrix must be a vector or two dimensional (size: ' + (0, _string.format)(size) + ')');
|
|
}
|
|
return c;
|
|
}
|
|
function _denseTranspose(m, rows, columns) {
|
|
// matrix array
|
|
const data = m._data;
|
|
// transposed matrix data
|
|
const transposed = [];
|
|
let transposedRow;
|
|
// loop columns
|
|
for (let j = 0; j < columns; j++) {
|
|
// initialize row
|
|
transposedRow = transposed[j] = [];
|
|
// loop rows
|
|
for (let i = 0; i < rows; i++) {
|
|
// set data
|
|
transposedRow[i] = (0, _object.clone)(data[i][j]);
|
|
}
|
|
}
|
|
// return matrix
|
|
return m.createDenseMatrix({
|
|
data: transposed,
|
|
size: [columns, rows],
|
|
datatype: m._datatype
|
|
});
|
|
}
|
|
function _sparseTranspose(m, rows, columns) {
|
|
// matrix arrays
|
|
const values = m._values;
|
|
const index = m._index;
|
|
const ptr = m._ptr;
|
|
// result matrices
|
|
const cvalues = values ? [] : undefined;
|
|
const cindex = [];
|
|
const cptr = [];
|
|
// row counts
|
|
const w = [];
|
|
for (let x = 0; x < rows; x++) {
|
|
w[x] = 0;
|
|
}
|
|
// vars
|
|
let p, l, j;
|
|
// loop values in matrix
|
|
for (p = 0, l = index.length; p < l; p++) {
|
|
// number of values in row
|
|
w[index[p]]++;
|
|
}
|
|
// cumulative sum
|
|
let sum = 0;
|
|
// initialize cptr with the cummulative sum of row counts
|
|
for (let i = 0; i < rows; i++) {
|
|
// update cptr
|
|
cptr.push(sum);
|
|
// update sum
|
|
sum += w[i];
|
|
// update w
|
|
w[i] = cptr[i];
|
|
}
|
|
// update cptr
|
|
cptr.push(sum);
|
|
// loop columns
|
|
for (j = 0; j < columns; j++) {
|
|
// values & index in column
|
|
for (let k0 = ptr[j], k1 = ptr[j + 1], k = k0; k < k1; k++) {
|
|
// C values & index
|
|
const q = w[index[k]]++;
|
|
// C[j, i] = A[i, j]
|
|
cindex[q] = j;
|
|
// check we need to process values (pattern matrix)
|
|
if (values) {
|
|
cvalues[q] = (0, _object.clone)(values[k]);
|
|
}
|
|
}
|
|
}
|
|
// return matrix
|
|
return m.createSparseMatrix({
|
|
values: cvalues,
|
|
index: cindex,
|
|
ptr: cptr,
|
|
size: [columns, rows],
|
|
datatype: m._datatype
|
|
});
|
|
}
|
|
}); |