701 lines
21 KiB
JavaScript
701 lines
21 KiB
JavaScript
"use strict";
|
||
|
||
Object.defineProperty(exports, "__esModule", {
|
||
value: true
|
||
});
|
||
exports.createComplexEigs = createComplexEigs;
|
||
var _object = require("../../../utils/object.js");
|
||
function createComplexEigs(_ref) {
|
||
let {
|
||
addScalar,
|
||
subtract,
|
||
flatten,
|
||
multiply,
|
||
multiplyScalar,
|
||
divideScalar,
|
||
sqrt,
|
||
abs,
|
||
bignumber,
|
||
diag,
|
||
size,
|
||
reshape,
|
||
inv,
|
||
qr,
|
||
usolve,
|
||
usolveAll,
|
||
equal,
|
||
complex,
|
||
larger,
|
||
smaller,
|
||
matrixFromColumns,
|
||
dot
|
||
} = _ref;
|
||
/**
|
||
* @param {number[][]} arr the matrix to find eigenvalues of
|
||
* @param {number} N size of the matrix
|
||
* @param {number|BigNumber} prec precision, anything lower will be considered zero
|
||
* @param {'number'|'BigNumber'|'Complex'} type
|
||
* @param {boolean} findVectors should we find eigenvectors?
|
||
*
|
||
* @returns {{ values: number[], vectors: number[][] }}
|
||
*/
|
||
function complexEigs(arr, N, prec, type) {
|
||
let findVectors = arguments.length > 4 && arguments[4] !== undefined ? arguments[4] : true;
|
||
// TODO check if any row/col are zero except the diagonal
|
||
|
||
// make sure corresponding rows and columns have similar magnitude
|
||
// important because of numerical stability
|
||
// MODIFIES arr by side effect!
|
||
const R = balance(arr, N, prec, type, findVectors);
|
||
|
||
// R is the row transformation matrix
|
||
// arr = A' = R A R^-1, A is the original matrix
|
||
// (if findVectors is false, R is undefined)
|
||
// (And so to return to original matrix: A = R^-1 arr R)
|
||
|
||
// TODO if magnitudes of elements vary over many orders,
|
||
// move greatest elements to the top left corner
|
||
|
||
// using similarity transformations, reduce the matrix
|
||
// to Hessenberg form (upper triangular plus one subdiagonal row)
|
||
// updates the transformation matrix R with new row operationsq
|
||
// MODIFIES arr by side effect!
|
||
reduceToHessenberg(arr, N, prec, type, findVectors, R);
|
||
// still true that original A = R^-1 arr R)
|
||
|
||
// find eigenvalues
|
||
const {
|
||
values,
|
||
C
|
||
} = iterateUntilTriangular(arr, N, prec, type, findVectors);
|
||
|
||
// values is the list of eigenvalues, C is the column
|
||
// transformation matrix that transforms arr, the hessenberg
|
||
// matrix, to upper triangular
|
||
// (So U = C^-1 arr C and the relationship between current arr
|
||
// and original A is unchanged.)
|
||
|
||
if (findVectors) {
|
||
const eigenvectors = findEigenvectors(arr, N, C, R, values, prec, type);
|
||
return {
|
||
values,
|
||
eigenvectors
|
||
};
|
||
}
|
||
return {
|
||
values
|
||
};
|
||
}
|
||
|
||
/**
|
||
* @param {number[][]} arr
|
||
* @param {number} N
|
||
* @param {number} prec
|
||
* @param {'number'|'BigNumber'|'Complex'} type
|
||
* @returns {number[][]}
|
||
*/
|
||
function balance(arr, N, prec, type, findVectors) {
|
||
const big = type === 'BigNumber';
|
||
const cplx = type === 'Complex';
|
||
const realzero = big ? bignumber(0) : 0;
|
||
const one = big ? bignumber(1) : cplx ? complex(1) : 1;
|
||
const realone = big ? bignumber(1) : 1;
|
||
|
||
// base of the floating-point arithmetic
|
||
const radix = big ? bignumber(10) : 2;
|
||
const radixSq = multiplyScalar(radix, radix);
|
||
|
||
// the diagonal transformation matrix R
|
||
let Rdiag;
|
||
if (findVectors) {
|
||
Rdiag = Array(N).fill(one);
|
||
}
|
||
|
||
// this isn't the only time we loop thru the matrix...
|
||
let last = false;
|
||
while (!last) {
|
||
// ...haha I'm joking! unless...
|
||
last = true;
|
||
for (let i = 0; i < N; i++) {
|
||
// compute the taxicab norm of i-th column and row
|
||
// TODO optimize for complex numbers
|
||
let colNorm = realzero;
|
||
let rowNorm = realzero;
|
||
for (let j = 0; j < N; j++) {
|
||
if (i === j) continue;
|
||
colNorm = addScalar(colNorm, abs(arr[j][i]));
|
||
rowNorm = addScalar(rowNorm, abs(arr[i][j]));
|
||
}
|
||
if (!equal(colNorm, 0) && !equal(rowNorm, 0)) {
|
||
// find integer power closest to balancing the matrix
|
||
// (we want to scale only by integer powers of radix,
|
||
// so that we don't lose any precision due to round-off)
|
||
|
||
let f = realone;
|
||
let c = colNorm;
|
||
const rowDivRadix = divideScalar(rowNorm, radix);
|
||
const rowMulRadix = multiplyScalar(rowNorm, radix);
|
||
while (smaller(c, rowDivRadix)) {
|
||
c = multiplyScalar(c, radixSq);
|
||
f = multiplyScalar(f, radix);
|
||
}
|
||
while (larger(c, rowMulRadix)) {
|
||
c = divideScalar(c, radixSq);
|
||
f = divideScalar(f, radix);
|
||
}
|
||
|
||
// check whether balancing is needed
|
||
// condition = (c + rowNorm) / f < 0.95 * (colNorm + rowNorm)
|
||
const condition = smaller(divideScalar(addScalar(c, rowNorm), f), multiplyScalar(addScalar(colNorm, rowNorm), 0.95));
|
||
|
||
// apply balancing similarity transformation
|
||
if (condition) {
|
||
// we should loop once again to check whether
|
||
// another rebalancing is needed
|
||
last = false;
|
||
const g = divideScalar(1, f);
|
||
for (let j = 0; j < N; j++) {
|
||
if (i === j) {
|
||
continue;
|
||
}
|
||
arr[i][j] = multiplyScalar(arr[i][j], g);
|
||
arr[j][i] = multiplyScalar(arr[j][i], f);
|
||
}
|
||
|
||
// keep track of transformations
|
||
if (findVectors) {
|
||
Rdiag[i] = multiplyScalar(Rdiag[i], g);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// return the diagonal row transformation matrix
|
||
return findVectors ? diag(Rdiag) : null;
|
||
}
|
||
|
||
/**
|
||
* @param {number[][]} arr
|
||
* @param {number} N
|
||
* @param {number} prec
|
||
* @param {'number'|'BigNumber'|'Complex'} type
|
||
* @param {boolean} findVectors
|
||
* @param {number[][]} R the row transformation matrix that will be modified
|
||
*/
|
||
function reduceToHessenberg(arr, N, prec, type, findVectors, R) {
|
||
const big = type === 'BigNumber';
|
||
const cplx = type === 'Complex';
|
||
const zero = big ? bignumber(0) : cplx ? complex(0) : 0;
|
||
if (big) {
|
||
prec = bignumber(prec);
|
||
}
|
||
for (let i = 0; i < N - 2; i++) {
|
||
// Find the largest subdiag element in the i-th col
|
||
|
||
let maxIndex = 0;
|
||
let max = zero;
|
||
for (let j = i + 1; j < N; j++) {
|
||
const el = arr[j][i];
|
||
if (smaller(abs(max), abs(el))) {
|
||
max = el;
|
||
maxIndex = j;
|
||
}
|
||
}
|
||
|
||
// This col is pivoted, no need to do anything
|
||
if (smaller(abs(max), prec)) {
|
||
continue;
|
||
}
|
||
if (maxIndex !== i + 1) {
|
||
// Interchange maxIndex-th and (i+1)-th row
|
||
const tmp1 = arr[maxIndex];
|
||
arr[maxIndex] = arr[i + 1];
|
||
arr[i + 1] = tmp1;
|
||
|
||
// Interchange maxIndex-th and (i+1)-th column
|
||
for (let j = 0; j < N; j++) {
|
||
const tmp2 = arr[j][maxIndex];
|
||
arr[j][maxIndex] = arr[j][i + 1];
|
||
arr[j][i + 1] = tmp2;
|
||
}
|
||
|
||
// keep track of transformations
|
||
if (findVectors) {
|
||
const tmp3 = R[maxIndex];
|
||
R[maxIndex] = R[i + 1];
|
||
R[i + 1] = tmp3;
|
||
}
|
||
}
|
||
|
||
// Reduce following rows and columns
|
||
for (let j = i + 2; j < N; j++) {
|
||
const n = divideScalar(arr[j][i], max);
|
||
if (n === 0) {
|
||
continue;
|
||
}
|
||
|
||
// from j-th row subtract n-times (i+1)th row
|
||
for (let k = 0; k < N; k++) {
|
||
arr[j][k] = subtract(arr[j][k], multiplyScalar(n, arr[i + 1][k]));
|
||
}
|
||
|
||
// to (i+1)th column add n-times j-th column
|
||
for (let k = 0; k < N; k++) {
|
||
arr[k][i + 1] = addScalar(arr[k][i + 1], multiplyScalar(n, arr[k][j]));
|
||
}
|
||
|
||
// keep track of transformations
|
||
if (findVectors) {
|
||
for (let k = 0; k < N; k++) {
|
||
R[j][k] = subtract(R[j][k], multiplyScalar(n, R[i + 1][k]));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return R;
|
||
}
|
||
|
||
/**
|
||
* @returns {{values: values, C: Matrix}}
|
||
* @see Press, Wiliams: Numerical recipes in Fortran 77
|
||
* @see https://en.wikipedia.org/wiki/QR_algorithm
|
||
*/
|
||
function iterateUntilTriangular(A, N, prec, type, findVectors) {
|
||
const big = type === 'BigNumber';
|
||
const cplx = type === 'Complex';
|
||
const one = big ? bignumber(1) : cplx ? complex(1) : 1;
|
||
if (big) {
|
||
prec = bignumber(prec);
|
||
}
|
||
|
||
// The Francis Algorithm
|
||
// The core idea of this algorithm is that doing successive
|
||
// A' = QtAQ transformations will eventually converge to block-
|
||
// upper-triangular with diagonal blocks either 1x1 or 2x2.
|
||
// The Q here is the one from the QR decomposition, A = QR.
|
||
// Since the eigenvalues of a block-upper-triangular matrix are
|
||
// the eigenvalues of its diagonal blocks and we know how to find
|
||
// eigenvalues of a 2x2 matrix, we know the eigenvalues of A.
|
||
|
||
let arr = (0, _object.clone)(A);
|
||
|
||
// the list of converged eigenvalues
|
||
const lambdas = [];
|
||
|
||
// size of arr, which will get smaller as eigenvalues converge
|
||
let n = N;
|
||
|
||
// the diagonal of the block-diagonal matrix that turns
|
||
// converged 2x2 matrices into upper triangular matrices
|
||
const Sdiag = [];
|
||
|
||
// N×N matrix describing the overall transformation done during the QR algorithm
|
||
let Qtotal = findVectors ? diag(Array(N).fill(one)) : undefined;
|
||
|
||
// nxn matrix describing the QR transformations done since last convergence
|
||
let Qpartial = findVectors ? diag(Array(n).fill(one)) : undefined;
|
||
|
||
// last eigenvalue converged before this many steps
|
||
let lastConvergenceBefore = 0;
|
||
while (lastConvergenceBefore <= 100) {
|
||
lastConvergenceBefore += 1;
|
||
|
||
// TODO if the convergence is slow, do something clever
|
||
|
||
// Perform the factorization
|
||
|
||
const k = arr[n - 1][n - 1]; // TODO this is apparently a somewhat
|
||
// old-fashioned choice; ideally set close to an eigenvalue, or
|
||
// perhaps better yet switch to the implicit QR version that is sometimes
|
||
// specifically called the "Francis algorithm" that is alluded to
|
||
// in the following TODO. (Or perhaps we switch to an independently
|
||
// optimized third-party package for the linear algebra operations...)
|
||
|
||
for (let i = 0; i < n; i++) {
|
||
arr[i][i] = subtract(arr[i][i], k);
|
||
}
|
||
|
||
// TODO do an implicit QR transformation
|
||
const {
|
||
Q,
|
||
R
|
||
} = qr(arr);
|
||
arr = multiply(R, Q);
|
||
for (let i = 0; i < n; i++) {
|
||
arr[i][i] = addScalar(arr[i][i], k);
|
||
}
|
||
|
||
// keep track of transformations
|
||
if (findVectors) {
|
||
Qpartial = multiply(Qpartial, Q);
|
||
}
|
||
|
||
// The rightmost diagonal element converged to an eigenvalue
|
||
if (n === 1 || smaller(abs(arr[n - 1][n - 2]), prec)) {
|
||
lastConvergenceBefore = 0;
|
||
lambdas.push(arr[n - 1][n - 1]);
|
||
|
||
// keep track of transformations
|
||
if (findVectors) {
|
||
Sdiag.unshift([[1]]);
|
||
inflateMatrix(Qpartial, N);
|
||
Qtotal = multiply(Qtotal, Qpartial);
|
||
if (n > 1) {
|
||
Qpartial = diag(Array(n - 1).fill(one));
|
||
}
|
||
}
|
||
|
||
// reduce the matrix size
|
||
n -= 1;
|
||
arr.pop();
|
||
for (let i = 0; i < n; i++) {
|
||
arr[i].pop();
|
||
}
|
||
|
||
// The rightmost diagonal 2x2 block converged
|
||
} else if (n === 2 || smaller(abs(arr[n - 2][n - 3]), prec)) {
|
||
lastConvergenceBefore = 0;
|
||
const ll = eigenvalues2x2(arr[n - 2][n - 2], arr[n - 2][n - 1], arr[n - 1][n - 2], arr[n - 1][n - 1]);
|
||
lambdas.push(...ll);
|
||
|
||
// keep track of transformations
|
||
if (findVectors) {
|
||
Sdiag.unshift(jordanBase2x2(arr[n - 2][n - 2], arr[n - 2][n - 1], arr[n - 1][n - 2], arr[n - 1][n - 1], ll[0], ll[1], prec, type));
|
||
inflateMatrix(Qpartial, N);
|
||
Qtotal = multiply(Qtotal, Qpartial);
|
||
if (n > 2) {
|
||
Qpartial = diag(Array(n - 2).fill(one));
|
||
}
|
||
}
|
||
|
||
// reduce the matrix size
|
||
n -= 2;
|
||
arr.pop();
|
||
arr.pop();
|
||
for (let i = 0; i < n; i++) {
|
||
arr[i].pop();
|
||
arr[i].pop();
|
||
}
|
||
}
|
||
if (n === 0) {
|
||
break;
|
||
}
|
||
}
|
||
|
||
// standard sorting
|
||
lambdas.sort((a, b) => +subtract(abs(a), abs(b)));
|
||
|
||
// the algorithm didn't converge
|
||
if (lastConvergenceBefore > 100) {
|
||
const err = Error('The eigenvalues failed to converge. Only found these eigenvalues: ' + lambdas.join(', '));
|
||
err.values = lambdas;
|
||
err.vectors = [];
|
||
throw err;
|
||
}
|
||
|
||
// combine the overall QR transformation Qtotal with the subsequent
|
||
// transformation S that turns the diagonal 2x2 blocks to upper triangular
|
||
const C = findVectors ? multiply(Qtotal, blockDiag(Sdiag, N)) : undefined;
|
||
return {
|
||
values: lambdas,
|
||
C
|
||
};
|
||
}
|
||
|
||
/**
|
||
* @param {Matrix} A hessenberg-form matrix
|
||
* @param {number} N size of A
|
||
* @param {Matrix} C column transformation matrix that turns A into upper triangular
|
||
* @param {Matrix} R similarity that turns original matrix into A
|
||
* @param {number[]} values array of eigenvalues of A
|
||
* @param {'number'|'BigNumber'|'Complex'} type
|
||
* @returns {number[][]} eigenvalues
|
||
*/
|
||
function findEigenvectors(A, N, C, R, values, prec, type) {
|
||
const Cinv = inv(C);
|
||
const U = multiply(Cinv, A, C);
|
||
const big = type === 'BigNumber';
|
||
const cplx = type === 'Complex';
|
||
const zero = big ? bignumber(0) : cplx ? complex(0) : 0;
|
||
const one = big ? bignumber(1) : cplx ? complex(1) : 1;
|
||
|
||
// turn values into a kind of "multiset"
|
||
// this way it is easier to find eigenvectors
|
||
const uniqueValues = [];
|
||
const multiplicities = [];
|
||
for (const lambda of values) {
|
||
const i = indexOf(uniqueValues, lambda, equal);
|
||
if (i === -1) {
|
||
uniqueValues.push(lambda);
|
||
multiplicities.push(1);
|
||
} else {
|
||
multiplicities[i] += 1;
|
||
}
|
||
}
|
||
|
||
// find eigenvectors by solving U − lambdaE = 0
|
||
// TODO replace with an iterative eigenvector algorithm
|
||
// (this one might fail for imprecise eigenvalues)
|
||
|
||
const vectors = [];
|
||
const len = uniqueValues.length;
|
||
const b = Array(N).fill(zero);
|
||
const E = diag(Array(N).fill(one));
|
||
for (let i = 0; i < len; i++) {
|
||
const lambda = uniqueValues[i];
|
||
const S = subtract(U, multiply(lambda, E)); // the characteristic matrix
|
||
|
||
let solutions = usolveAll(S, b);
|
||
solutions.shift(); // ignore the null vector
|
||
|
||
// looks like we missed something, try inverse iteration
|
||
// But if that fails, just presume that the original matrix truly
|
||
// was defective.
|
||
while (solutions.length < multiplicities[i]) {
|
||
const approxVec = inverseIterate(S, N, solutions, prec, type);
|
||
if (approxVec === null) {
|
||
break;
|
||
} // no more vectors were found
|
||
solutions.push(approxVec);
|
||
}
|
||
|
||
// Transform back into original array coordinates
|
||
const correction = multiply(inv(R), C);
|
||
solutions = solutions.map(v => multiply(correction, v));
|
||
vectors.push(...solutions.map(v => ({
|
||
value: lambda,
|
||
vector: flatten(v)
|
||
})));
|
||
}
|
||
return vectors;
|
||
}
|
||
|
||
/**
|
||
* Compute the eigenvalues of an 2x2 matrix
|
||
* @return {[number,number]}
|
||
*/
|
||
function eigenvalues2x2(a, b, c, d) {
|
||
// lambda_+- = 1/2 trA +- 1/2 sqrt( tr^2 A - 4 detA )
|
||
const trA = addScalar(a, d);
|
||
const detA = subtract(multiplyScalar(a, d), multiplyScalar(b, c));
|
||
const x = multiplyScalar(trA, 0.5);
|
||
const y = multiplyScalar(sqrt(subtract(multiplyScalar(trA, trA), multiplyScalar(4, detA))), 0.5);
|
||
return [addScalar(x, y), subtract(x, y)];
|
||
}
|
||
|
||
/**
|
||
* For an 2x2 matrix compute the transformation matrix S,
|
||
* so that SAS^-1 is an upper triangular matrix
|
||
* @return {[[number,number],[number,number]]}
|
||
* @see https://math.berkeley.edu/~ogus/old/Math_54-05/webfoils/jordan.pdf
|
||
* @see http://people.math.harvard.edu/~knill/teaching/math21b2004/exhibits/2dmatrices/index.html
|
||
*/
|
||
function jordanBase2x2(a, b, c, d, l1, l2, prec, type) {
|
||
const big = type === 'BigNumber';
|
||
const cplx = type === 'Complex';
|
||
const zero = big ? bignumber(0) : cplx ? complex(0) : 0;
|
||
const one = big ? bignumber(1) : cplx ? complex(1) : 1;
|
||
|
||
// matrix is already upper triangular
|
||
// return an identity matrix
|
||
if (smaller(abs(c), prec)) {
|
||
return [[one, zero], [zero, one]];
|
||
}
|
||
|
||
// matrix is diagonalizable
|
||
// return its eigenvectors as columns
|
||
if (larger(abs(subtract(l1, l2)), prec)) {
|
||
return [[subtract(l1, d), subtract(l2, d)], [c, c]];
|
||
}
|
||
|
||
// matrix is not diagonalizable
|
||
// compute diagonal elements of N = A - lambdaI
|
||
const na = subtract(a, l1);
|
||
const nd = subtract(d, l1);
|
||
|
||
// col(N,2) = 0 implies S = ( col(N,1), e_1 )
|
||
// col(N,2) != 0 implies S = ( col(N,2), e_2 )
|
||
|
||
if (smaller(abs(b), prec) && smaller(abs(nd), prec)) {
|
||
return [[na, one], [c, zero]];
|
||
} else {
|
||
return [[b, zero], [nd, one]];
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Enlarge the matrix from nxn to NxN, setting the new
|
||
* elements to 1 on diagonal and 0 elsewhere
|
||
*/
|
||
function inflateMatrix(arr, N) {
|
||
// add columns
|
||
for (let i = 0; i < arr.length; i++) {
|
||
arr[i].push(...Array(N - arr[i].length).fill(0));
|
||
}
|
||
|
||
// add rows
|
||
for (let i = arr.length; i < N; i++) {
|
||
arr.push(Array(N).fill(0));
|
||
arr[i][i] = 1;
|
||
}
|
||
return arr;
|
||
}
|
||
|
||
/**
|
||
* Create a block-diagonal matrix with the given square matrices on the diagonal
|
||
* @param {Matrix[] | number[][][]} arr array of matrices to be placed on the diagonal
|
||
* @param {number} N the size of the resulting matrix
|
||
*/
|
||
function blockDiag(arr, N) {
|
||
const M = [];
|
||
for (let i = 0; i < N; i++) {
|
||
M[i] = Array(N).fill(0);
|
||
}
|
||
let I = 0;
|
||
for (const sub of arr) {
|
||
const n = sub.length;
|
||
for (let i = 0; i < n; i++) {
|
||
for (let j = 0; j < n; j++) {
|
||
M[I + i][I + j] = sub[i][j];
|
||
}
|
||
}
|
||
I += n;
|
||
}
|
||
return M;
|
||
}
|
||
|
||
/**
|
||
* Finds the index of an element in an array using a custom equality function
|
||
* @template T
|
||
* @param {Array<T>} arr array in which to search
|
||
* @param {T} el the element to find
|
||
* @param {function(T, T): boolean} fn the equality function, first argument is an element of `arr`, the second is always `el`
|
||
* @returns {number} the index of `el`, or -1 when it's not in `arr`
|
||
*/
|
||
function indexOf(arr, el, fn) {
|
||
for (let i = 0; i < arr.length; i++) {
|
||
if (fn(arr[i], el)) {
|
||
return i;
|
||
}
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/**
|
||
* Provided a near-singular upper-triangular matrix A and a list of vectors,
|
||
* finds an eigenvector of A with the smallest eigenvalue, which is orthogonal
|
||
* to each vector in the list
|
||
* @template T
|
||
* @param {T[][]} A near-singular square matrix
|
||
* @param {number} N dimension
|
||
* @param {T[][]} orthog list of vectors
|
||
* @param {number} prec epsilon
|
||
* @param {'number'|'BigNumber'|'Complex'} type
|
||
* @return {T[] | null} eigenvector
|
||
*
|
||
* @see Numerical Recipes for Fortran 77 – 11.7 Eigenvalues or Eigenvectors by Inverse Iteration
|
||
*/
|
||
function inverseIterate(A, N, orthog, prec, type) {
|
||
const largeNum = type === 'BigNumber' ? bignumber(1000) : 1000;
|
||
let b; // the vector
|
||
|
||
// you better choose a random vector before I count to five
|
||
let i = 0;
|
||
for (; i < 5; ++i) {
|
||
b = randomOrthogonalVector(N, orthog, type);
|
||
try {
|
||
b = usolve(A, b);
|
||
} catch (_unused) {
|
||
// That direction didn't work, likely because the original matrix
|
||
// was defective. But still make the full number of tries...
|
||
continue;
|
||
}
|
||
if (larger(norm(b), largeNum)) {
|
||
break;
|
||
}
|
||
}
|
||
if (i >= 5) {
|
||
return null; // couldn't find any orthogonal vector in the image
|
||
}
|
||
|
||
// you better converge before I count to ten
|
||
i = 0;
|
||
while (true) {
|
||
const c = usolve(A, b);
|
||
if (smaller(norm(orthogonalComplement(b, [c])), prec)) {
|
||
break;
|
||
}
|
||
if (++i >= 10) {
|
||
return null;
|
||
}
|
||
b = normalize(c);
|
||
}
|
||
return b;
|
||
}
|
||
|
||
/**
|
||
* Generates a random unit vector of dimension N, orthogonal to each vector in the list
|
||
* @template T
|
||
* @param {number} N dimension
|
||
* @param {T[][]} orthog list of vectors
|
||
* @param {'number'|'BigNumber'|'Complex'} type
|
||
* @returns {T[]} random vector
|
||
*/
|
||
function randomOrthogonalVector(N, orthog, type) {
|
||
const big = type === 'BigNumber';
|
||
const cplx = type === 'Complex';
|
||
|
||
// generate random vector with the correct type
|
||
let v = Array(N).fill(0).map(_ => 2 * Math.random() - 1);
|
||
if (big) {
|
||
v = v.map(n => bignumber(n));
|
||
}
|
||
if (cplx) {
|
||
v = v.map(n => complex(n));
|
||
}
|
||
|
||
// project to orthogonal complement
|
||
v = orthogonalComplement(v, orthog);
|
||
|
||
// normalize
|
||
return normalize(v, type);
|
||
}
|
||
|
||
/**
|
||
* Project vector v to the orthogonal complement of an array of vectors
|
||
*/
|
||
function orthogonalComplement(v, orthog) {
|
||
const vectorShape = size(v);
|
||
for (let w of orthog) {
|
||
w = reshape(w, vectorShape); // make sure this is just a vector computation
|
||
// v := v − (w, v)/|w|^2 w
|
||
v = subtract(v, multiply(divideScalar(dot(w, v), dot(w, w)), w));
|
||
}
|
||
return v;
|
||
}
|
||
|
||
/**
|
||
* Calculate the norm of a vector.
|
||
* We can't use math.norm because factory can't handle circular dependency.
|
||
* Seriously, I'm really fed up with factory.
|
||
*/
|
||
function norm(v) {
|
||
return abs(sqrt(dot(v, v)));
|
||
}
|
||
|
||
/**
|
||
* Normalize a vector
|
||
* @template T
|
||
* @param {T[]} v
|
||
* @param {'number'|'BigNumber'|'Complex'} type
|
||
* @returns {T[]} normalized vec
|
||
*/
|
||
function normalize(v, type) {
|
||
const big = type === 'BigNumber';
|
||
const cplx = type === 'Complex';
|
||
const one = big ? bignumber(1) : cplx ? complex(1) : 1;
|
||
return multiply(divideScalar(one, norm(v)), v);
|
||
}
|
||
return complexEigs;
|
||
} |