172 lines
5.4 KiB
JavaScript
172 lines
5.4 KiB
JavaScript
"use strict";
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.createNthRootNumber = exports.createNthRoot = void 0;
|
|
var _factory = require("../../utils/factory.js");
|
|
var _matAlgo01xDSid = require("../../type/matrix/utils/matAlgo01xDSid.js");
|
|
var _matAlgo02xDS = require("../../type/matrix/utils/matAlgo02xDS0.js");
|
|
var _matAlgo06xS0S = require("../../type/matrix/utils/matAlgo06xS0S0.js");
|
|
var _matAlgo11xS0s = require("../../type/matrix/utils/matAlgo11xS0s.js");
|
|
var _matrixAlgorithmSuite = require("../../type/matrix/utils/matrixAlgorithmSuite.js");
|
|
var _index = require("../../plain/number/index.js");
|
|
const name = 'nthRoot';
|
|
const dependencies = ['typed', 'matrix', 'equalScalar', 'BigNumber', 'concat'];
|
|
const createNthRoot = exports.createNthRoot = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
|
|
let {
|
|
typed,
|
|
matrix,
|
|
equalScalar,
|
|
BigNumber,
|
|
concat
|
|
} = _ref;
|
|
const matAlgo01xDSid = (0, _matAlgo01xDSid.createMatAlgo01xDSid)({
|
|
typed
|
|
});
|
|
const matAlgo02xDS0 = (0, _matAlgo02xDS.createMatAlgo02xDS0)({
|
|
typed,
|
|
equalScalar
|
|
});
|
|
const matAlgo06xS0S0 = (0, _matAlgo06xS0S.createMatAlgo06xS0S0)({
|
|
typed,
|
|
equalScalar
|
|
});
|
|
const matAlgo11xS0s = (0, _matAlgo11xS0s.createMatAlgo11xS0s)({
|
|
typed,
|
|
equalScalar
|
|
});
|
|
const matrixAlgorithmSuite = (0, _matrixAlgorithmSuite.createMatrixAlgorithmSuite)({
|
|
typed,
|
|
matrix,
|
|
concat
|
|
});
|
|
|
|
/**
|
|
* Calculate the nth root of a value.
|
|
* The principal nth root of a positive real number A, is the positive real
|
|
* solution of the equation
|
|
*
|
|
* x^root = A
|
|
*
|
|
* For matrices, the function is evaluated element wise.
|
|
*
|
|
* Syntax:
|
|
*
|
|
* math.nthRoot(a)
|
|
* math.nthRoot(a, root)
|
|
*
|
|
* Examples:
|
|
*
|
|
* math.nthRoot(9, 2) // returns 3 (since 3^2 == 9)
|
|
* math.sqrt(9) // returns 3 (since 3^2 == 9)
|
|
* math.nthRoot(64, 3) // returns 4 (since 4^3 == 64)
|
|
*
|
|
* See also:
|
|
*
|
|
* sqrt, pow
|
|
*
|
|
* @param {number | BigNumber | Array | Matrix | Complex} a
|
|
* Value for which to calculate the nth root
|
|
* @param {number | BigNumber} [root=2] The root.
|
|
* @return {number | Complex | Array | Matrix} Returns the nth root of `a`
|
|
*/
|
|
function complexErr() {
|
|
throw new Error('Complex number not supported in function nthRoot. Use nthRoots instead.');
|
|
}
|
|
return typed(name, {
|
|
number: _index.nthRootNumber,
|
|
'number, number': _index.nthRootNumber,
|
|
BigNumber: x => _bigNthRoot(x, new BigNumber(2)),
|
|
'BigNumber, BigNumber': _bigNthRoot,
|
|
Complex: complexErr,
|
|
'Complex, number': complexErr,
|
|
Array: typed.referTo('DenseMatrix,number', selfDn => x => selfDn(matrix(x), 2).valueOf()),
|
|
DenseMatrix: typed.referTo('DenseMatrix,number', selfDn => x => selfDn(x, 2)),
|
|
SparseMatrix: typed.referTo('SparseMatrix,number', selfSn => x => selfSn(x, 2)),
|
|
'SparseMatrix, SparseMatrix': typed.referToSelf(self => (x, y) => {
|
|
// density must be one (no zeros in matrix)
|
|
if (y.density() === 1) {
|
|
// sparse + sparse
|
|
return matAlgo06xS0S0(x, y, self);
|
|
} else {
|
|
// throw exception
|
|
throw new Error('Root must be non-zero');
|
|
}
|
|
}),
|
|
'DenseMatrix, SparseMatrix': typed.referToSelf(self => (x, y) => {
|
|
// density must be one (no zeros in matrix)
|
|
if (y.density() === 1) {
|
|
// dense + sparse
|
|
return matAlgo01xDSid(x, y, self, false);
|
|
} else {
|
|
// throw exception
|
|
throw new Error('Root must be non-zero');
|
|
}
|
|
}),
|
|
'Array, SparseMatrix': typed.referTo('DenseMatrix,SparseMatrix', selfDS => (x, y) => selfDS(matrix(x), y)),
|
|
'number | BigNumber, SparseMatrix': typed.referToSelf(self => (x, y) => {
|
|
// density must be one (no zeros in matrix)
|
|
if (y.density() === 1) {
|
|
// sparse - scalar
|
|
return matAlgo11xS0s(y, x, self, true);
|
|
} else {
|
|
// throw exception
|
|
throw new Error('Root must be non-zero');
|
|
}
|
|
})
|
|
}, matrixAlgorithmSuite({
|
|
scalar: 'number | BigNumber',
|
|
SD: matAlgo02xDS0,
|
|
Ss: matAlgo11xS0s,
|
|
sS: false
|
|
}));
|
|
|
|
/**
|
|
* Calculate the nth root of a for BigNumbers, solve x^root == a
|
|
* https://rosettacode.org/wiki/Nth_root#JavaScript
|
|
* @param {BigNumber} a
|
|
* @param {BigNumber} root
|
|
* @private
|
|
*/
|
|
function _bigNthRoot(a, root) {
|
|
const precision = BigNumber.precision;
|
|
const Big = BigNumber.clone({
|
|
precision: precision + 2
|
|
});
|
|
const zero = new BigNumber(0);
|
|
const one = new Big(1);
|
|
const inv = root.isNegative();
|
|
if (inv) {
|
|
root = root.neg();
|
|
}
|
|
if (root.isZero()) {
|
|
throw new Error('Root must be non-zero');
|
|
}
|
|
if (a.isNegative() && !root.abs().mod(2).equals(1)) {
|
|
throw new Error('Root must be odd when a is negative.');
|
|
}
|
|
|
|
// edge cases zero and infinity
|
|
if (a.isZero()) {
|
|
return inv ? new Big(Infinity) : 0;
|
|
}
|
|
if (!a.isFinite()) {
|
|
return inv ? zero : a;
|
|
}
|
|
let x = a.abs().pow(one.div(root));
|
|
// If a < 0, we require that root is an odd integer,
|
|
// so (-1) ^ (1/root) = -1
|
|
x = a.isNeg() ? x.neg() : x;
|
|
return new BigNumber((inv ? one.div(x) : x).toPrecision(precision));
|
|
}
|
|
});
|
|
const createNthRootNumber = exports.createNthRootNumber = /* #__PURE__ */(0, _factory.factory)(name, ['typed'], _ref2 => {
|
|
let {
|
|
typed
|
|
} = _ref2;
|
|
return typed(name, {
|
|
number: _index.nthRootNumber,
|
|
'number, number': _index.nthRootNumber
|
|
});
|
|
}); |