jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/cjs/function/algebra/sparse/csSqr.js
2025-01-02 11:13:50 +08:00

186 lines
5.1 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createCsSqr = void 0;
var _csPermute = require("./csPermute.js");
var _csPost = require("./csPost.js");
var _csEtree = require("./csEtree.js");
var _csAmd = require("./csAmd.js");
var _csCounts = require("./csCounts.js");
var _factory = require("../../../utils/factory.js");
// Copyright (c) 2006-2024, Timothy A. Davis, All Rights Reserved.
// SPDX-License-Identifier: LGPL-2.1+
// https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/dev/CSparse/Source
const name = 'csSqr';
const dependencies = ['add', 'multiply', 'transpose'];
const createCsSqr = exports.createCsSqr = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
add,
multiply,
transpose
} = _ref;
const csAmd = (0, _csAmd.createCsAmd)({
add,
multiply,
transpose
});
const csCounts = (0, _csCounts.createCsCounts)({
transpose
});
/**
* Symbolic ordering and analysis for QR and LU decompositions.
*
* @param {Number} order The ordering strategy (see csAmd for more details)
* @param {Matrix} a The A matrix
* @param {boolean} qr Symbolic ordering and analysis for QR decomposition (true) or
* symbolic ordering and analysis for LU decomposition (false)
*
* @return {Object} The Symbolic ordering and analysis for matrix A
*/
return function csSqr(order, a, qr) {
// a arrays
const aptr = a._ptr;
const asize = a._size;
// columns
const n = asize[1];
// vars
let k;
// symbolic analysis result
const s = {};
// fill-reducing ordering
s.q = csAmd(order, a);
// validate results
if (order && !s.q) {
return null;
}
// QR symbolic analysis
if (qr) {
// apply permutations if needed
const c = order ? (0, _csPermute.csPermute)(a, null, s.q, 0) : a;
// etree of C'*C, where C=A(:,q)
s.parent = (0, _csEtree.csEtree)(c, 1);
// post order elimination tree
const post = (0, _csPost.csPost)(s.parent, n);
// col counts chol(C'*C)
s.cp = csCounts(c, s.parent, post, 1);
// check we have everything needed to calculate number of nonzero elements
if (c && s.parent && s.cp && _vcount(c, s)) {
// calculate number of nonzero elements
for (s.unz = 0, k = 0; k < n; k++) {
s.unz += s.cp[k];
}
}
} else {
// for LU factorization only, guess nnz(L) and nnz(U)
s.unz = 4 * aptr[n] + n;
s.lnz = s.unz;
}
// return result S
return s;
};
/**
* Compute nnz(V) = s.lnz, s.pinv, s.leftmost, s.m2 from A and s.parent
*/
function _vcount(a, s) {
// a arrays
const aptr = a._ptr;
const aindex = a._index;
const asize = a._size;
// rows & columns
const m = asize[0];
const n = asize[1];
// initialize s arrays
s.pinv = []; // (m + n)
s.leftmost = []; // (m)
// vars
const parent = s.parent;
const pinv = s.pinv;
const leftmost = s.leftmost;
// workspace, next: first m entries, head: next n entries, tail: next n entries, nque: next n entries
const w = []; // (m + 3 * n)
const next = 0;
const head = m;
const tail = m + n;
const nque = m + 2 * n;
// vars
let i, k, p, p0, p1;
// initialize w
for (k = 0; k < n; k++) {
// queue k is empty
w[head + k] = -1;
w[tail + k] = -1;
w[nque + k] = 0;
}
// initialize row arrays
for (i = 0; i < m; i++) {
leftmost[i] = -1;
}
// loop columns backwards
for (k = n - 1; k >= 0; k--) {
// values & index for column k
for (p0 = aptr[k], p1 = aptr[k + 1], p = p0; p < p1; p++) {
// leftmost[i] = min(find(A(i,:)))
leftmost[aindex[p]] = k;
}
}
// scan rows in reverse order
for (i = m - 1; i >= 0; i--) {
// row i is not yet ordered
pinv[i] = -1;
k = leftmost[i];
// check row i is empty
if (k === -1) {
continue;
}
// first row in queue k
if (w[nque + k]++ === 0) {
w[tail + k] = i;
}
// put i at head of queue k
w[next + i] = w[head + k];
w[head + k] = i;
}
s.lnz = 0;
s.m2 = m;
// find row permutation and nnz(V)
for (k = 0; k < n; k++) {
// remove row i from queue k
i = w[head + k];
// count V(k,k) as nonzero
s.lnz++;
// add a fictitious row
if (i < 0) {
i = s.m2++;
}
// associate row i with V(:,k)
pinv[i] = k;
// skip if V(k+1:m,k) is empty
if (--nque[k] <= 0) {
continue;
}
// nque[k] is nnz (V(k+1:m,k))
s.lnz += w[nque + k];
// move all rows to parent of k
const pa = parent[k];
if (pa !== -1) {
if (w[nque + pa] === 0) {
w[tail + pa] = w[tail + k];
}
w[next + w[tail + k]] = w[head + pa];
w[head + pa] = w[next + i];
w[nque + pa] += w[nque + k];
}
}
for (i = 0; i < m; i++) {
if (pinv[i] < 0) {
pinv[i] = k++;
}
}
return true;
}
});