186 lines
5.1 KiB
JavaScript
186 lines
5.1 KiB
JavaScript
"use strict";
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.createCsSqr = void 0;
|
|
var _csPermute = require("./csPermute.js");
|
|
var _csPost = require("./csPost.js");
|
|
var _csEtree = require("./csEtree.js");
|
|
var _csAmd = require("./csAmd.js");
|
|
var _csCounts = require("./csCounts.js");
|
|
var _factory = require("../../../utils/factory.js");
|
|
// Copyright (c) 2006-2024, Timothy A. Davis, All Rights Reserved.
|
|
// SPDX-License-Identifier: LGPL-2.1+
|
|
// https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/dev/CSparse/Source
|
|
|
|
const name = 'csSqr';
|
|
const dependencies = ['add', 'multiply', 'transpose'];
|
|
const createCsSqr = exports.createCsSqr = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
|
|
let {
|
|
add,
|
|
multiply,
|
|
transpose
|
|
} = _ref;
|
|
const csAmd = (0, _csAmd.createCsAmd)({
|
|
add,
|
|
multiply,
|
|
transpose
|
|
});
|
|
const csCounts = (0, _csCounts.createCsCounts)({
|
|
transpose
|
|
});
|
|
|
|
/**
|
|
* Symbolic ordering and analysis for QR and LU decompositions.
|
|
*
|
|
* @param {Number} order The ordering strategy (see csAmd for more details)
|
|
* @param {Matrix} a The A matrix
|
|
* @param {boolean} qr Symbolic ordering and analysis for QR decomposition (true) or
|
|
* symbolic ordering and analysis for LU decomposition (false)
|
|
*
|
|
* @return {Object} The Symbolic ordering and analysis for matrix A
|
|
*/
|
|
return function csSqr(order, a, qr) {
|
|
// a arrays
|
|
const aptr = a._ptr;
|
|
const asize = a._size;
|
|
// columns
|
|
const n = asize[1];
|
|
// vars
|
|
let k;
|
|
// symbolic analysis result
|
|
const s = {};
|
|
// fill-reducing ordering
|
|
s.q = csAmd(order, a);
|
|
// validate results
|
|
if (order && !s.q) {
|
|
return null;
|
|
}
|
|
// QR symbolic analysis
|
|
if (qr) {
|
|
// apply permutations if needed
|
|
const c = order ? (0, _csPermute.csPermute)(a, null, s.q, 0) : a;
|
|
// etree of C'*C, where C=A(:,q)
|
|
s.parent = (0, _csEtree.csEtree)(c, 1);
|
|
// post order elimination tree
|
|
const post = (0, _csPost.csPost)(s.parent, n);
|
|
// col counts chol(C'*C)
|
|
s.cp = csCounts(c, s.parent, post, 1);
|
|
// check we have everything needed to calculate number of nonzero elements
|
|
if (c && s.parent && s.cp && _vcount(c, s)) {
|
|
// calculate number of nonzero elements
|
|
for (s.unz = 0, k = 0; k < n; k++) {
|
|
s.unz += s.cp[k];
|
|
}
|
|
}
|
|
} else {
|
|
// for LU factorization only, guess nnz(L) and nnz(U)
|
|
s.unz = 4 * aptr[n] + n;
|
|
s.lnz = s.unz;
|
|
}
|
|
// return result S
|
|
return s;
|
|
};
|
|
|
|
/**
|
|
* Compute nnz(V) = s.lnz, s.pinv, s.leftmost, s.m2 from A and s.parent
|
|
*/
|
|
function _vcount(a, s) {
|
|
// a arrays
|
|
const aptr = a._ptr;
|
|
const aindex = a._index;
|
|
const asize = a._size;
|
|
// rows & columns
|
|
const m = asize[0];
|
|
const n = asize[1];
|
|
// initialize s arrays
|
|
s.pinv = []; // (m + n)
|
|
s.leftmost = []; // (m)
|
|
// vars
|
|
const parent = s.parent;
|
|
const pinv = s.pinv;
|
|
const leftmost = s.leftmost;
|
|
// workspace, next: first m entries, head: next n entries, tail: next n entries, nque: next n entries
|
|
const w = []; // (m + 3 * n)
|
|
const next = 0;
|
|
const head = m;
|
|
const tail = m + n;
|
|
const nque = m + 2 * n;
|
|
// vars
|
|
let i, k, p, p0, p1;
|
|
// initialize w
|
|
for (k = 0; k < n; k++) {
|
|
// queue k is empty
|
|
w[head + k] = -1;
|
|
w[tail + k] = -1;
|
|
w[nque + k] = 0;
|
|
}
|
|
// initialize row arrays
|
|
for (i = 0; i < m; i++) {
|
|
leftmost[i] = -1;
|
|
}
|
|
// loop columns backwards
|
|
for (k = n - 1; k >= 0; k--) {
|
|
// values & index for column k
|
|
for (p0 = aptr[k], p1 = aptr[k + 1], p = p0; p < p1; p++) {
|
|
// leftmost[i] = min(find(A(i,:)))
|
|
leftmost[aindex[p]] = k;
|
|
}
|
|
}
|
|
// scan rows in reverse order
|
|
for (i = m - 1; i >= 0; i--) {
|
|
// row i is not yet ordered
|
|
pinv[i] = -1;
|
|
k = leftmost[i];
|
|
// check row i is empty
|
|
if (k === -1) {
|
|
continue;
|
|
}
|
|
// first row in queue k
|
|
if (w[nque + k]++ === 0) {
|
|
w[tail + k] = i;
|
|
}
|
|
// put i at head of queue k
|
|
w[next + i] = w[head + k];
|
|
w[head + k] = i;
|
|
}
|
|
s.lnz = 0;
|
|
s.m2 = m;
|
|
// find row permutation and nnz(V)
|
|
for (k = 0; k < n; k++) {
|
|
// remove row i from queue k
|
|
i = w[head + k];
|
|
// count V(k,k) as nonzero
|
|
s.lnz++;
|
|
// add a fictitious row
|
|
if (i < 0) {
|
|
i = s.m2++;
|
|
}
|
|
// associate row i with V(:,k)
|
|
pinv[i] = k;
|
|
// skip if V(k+1:m,k) is empty
|
|
if (--nque[k] <= 0) {
|
|
continue;
|
|
}
|
|
// nque[k] is nnz (V(k+1:m,k))
|
|
s.lnz += w[nque + k];
|
|
// move all rows to parent of k
|
|
const pa = parent[k];
|
|
if (pa !== -1) {
|
|
if (w[nque + pa] === 0) {
|
|
w[tail + pa] = w[tail + k];
|
|
}
|
|
w[next + w[tail + k]] = w[head + pa];
|
|
w[head + pa] = w[next + i];
|
|
w[nque + pa] += w[nque + k];
|
|
}
|
|
}
|
|
for (i = 0; i < m; i++) {
|
|
if (pinv[i] < 0) {
|
|
pinv[i] = k++;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
}); |