jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/cjs/function/algebra/sparse/csSpsolve.js
2025-01-02 11:13:50 +08:00

91 lines
3.1 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createCsSpsolve = void 0;
var _csReach = require("./csReach.js");
var _factory = require("../../../utils/factory.js");
// Copyright (c) 2006-2024, Timothy A. Davis, All Rights Reserved.
// SPDX-License-Identifier: LGPL-2.1+
// https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/dev/CSparse/Source
const name = 'csSpsolve';
const dependencies = ['divideScalar', 'multiply', 'subtract'];
const createCsSpsolve = exports.createCsSpsolve = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
divideScalar,
multiply,
subtract
} = _ref;
/**
* The function csSpsolve() computes the solution to G * x = bk, where bk is the
* kth column of B. When lo is true, the function assumes G = L is lower triangular with the
* diagonal entry as the first entry in each column. When lo is true, the function assumes G = U
* is upper triangular with the diagonal entry as the last entry in each column.
*
* @param {Matrix} g The G matrix
* @param {Matrix} b The B matrix
* @param {Number} k The kth column in B
* @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
* The first n entries is the nonzero pattern, the last n entries is the stack
* @param {Array} x The soluton to the linear system G * x = b
* @param {Array} pinv The inverse row permutation vector, must be null for L * x = b
* @param {boolean} lo The lower (true) upper triangular (false) flag
*
* @return {Number} The index for the nonzero pattern
*/
return function csSpsolve(g, b, k, xi, x, pinv, lo) {
// g arrays
const gvalues = g._values;
const gindex = g._index;
const gptr = g._ptr;
const gsize = g._size;
// columns
const n = gsize[1];
// b arrays
const bvalues = b._values;
const bindex = b._index;
const bptr = b._ptr;
// vars
let p, p0, p1, q;
// xi[top..n-1] = csReach(B(:,k))
const top = (0, _csReach.csReach)(g, b, k, xi, pinv);
// clear x
for (p = top; p < n; p++) {
x[xi[p]] = 0;
}
// scatter b
for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) {
x[bindex[p]] = bvalues[p];
}
// loop columns
for (let px = top; px < n; px++) {
// x array index for px
const j = xi[px];
// apply permutation vector (U x = b), j maps to column J of G
const J = pinv ? pinv[j] : j;
// check column J is empty
if (J < 0) {
continue;
}
// column value indeces in G, p0 <= p < p1
p0 = gptr[J];
p1 = gptr[J + 1];
// x(j) /= G(j,j)
x[j] = divideScalar(x[j], gvalues[lo ? p0 : p1 - 1]);
// first entry L(j,j)
p = lo ? p0 + 1 : p0;
q = lo ? p1 : p1 - 1;
// loop
for (; p < q; p++) {
// row
const i = gindex[p];
// x(i) -= G(i,j) * x(j)
x[i] = subtract(x[i], multiply(gvalues[p], x[j]));
}
}
// return top of stack
return top;
};
});