133 lines
3.7 KiB
JavaScript
133 lines
3.7 KiB
JavaScript
"use strict";
|
|
|
|
Object.defineProperty(exports, "__esModule", {
|
|
value: true
|
|
});
|
|
exports.createCsCounts = void 0;
|
|
var _factory = require("../../../utils/factory.js");
|
|
var _csLeaf = require("./csLeaf.js");
|
|
// Copyright (c) 2006-2024, Timothy A. Davis, All Rights Reserved.
|
|
// SPDX-License-Identifier: LGPL-2.1+
|
|
// https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/dev/CSparse/Source
|
|
|
|
const name = 'csCounts';
|
|
const dependencies = ['transpose'];
|
|
const createCsCounts = exports.createCsCounts = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
|
|
let {
|
|
transpose
|
|
} = _ref;
|
|
/**
|
|
* Computes the column counts using the upper triangular part of A.
|
|
* It transposes A internally, none of the input parameters are modified.
|
|
*
|
|
* @param {Matrix} a The sparse matrix A
|
|
*
|
|
* @param {Matrix} ata Count the columns of A'A instead
|
|
*
|
|
* @return An array of size n of the column counts or null on error
|
|
*/
|
|
return function (a, parent, post, ata) {
|
|
// check inputs
|
|
if (!a || !parent || !post) {
|
|
return null;
|
|
}
|
|
// a matrix arrays
|
|
const asize = a._size;
|
|
// rows and columns
|
|
const m = asize[0];
|
|
const n = asize[1];
|
|
// variables
|
|
let i, j, k, J, p, p0, p1;
|
|
|
|
// workspace size
|
|
const s = 4 * n + (ata ? n + m + 1 : 0);
|
|
// allocate workspace
|
|
const w = []; // (s)
|
|
const ancestor = 0; // first n entries
|
|
const maxfirst = n; // next n entries
|
|
const prevleaf = 2 * n; // next n entries
|
|
const first = 3 * n; // next n entries
|
|
const head = 4 * n; // next n + 1 entries (used when ata is true)
|
|
const next = 5 * n + 1; // last entries in workspace
|
|
// clear workspace w[0..s-1]
|
|
for (k = 0; k < s; k++) {
|
|
w[k] = -1;
|
|
}
|
|
|
|
// allocate result
|
|
const colcount = []; // (n)
|
|
|
|
// AT = A'
|
|
const at = transpose(a);
|
|
// at arrays
|
|
const tindex = at._index;
|
|
const tptr = at._ptr;
|
|
|
|
// find w[first + j]
|
|
for (k = 0; k < n; k++) {
|
|
j = post[k];
|
|
// colcount[j]=1 if j is a leaf
|
|
colcount[j] = w[first + j] === -1 ? 1 : 0;
|
|
for (; j !== -1 && w[first + j] === -1; j = parent[j]) {
|
|
w[first + j] = k;
|
|
}
|
|
}
|
|
|
|
// initialize ata if needed
|
|
if (ata) {
|
|
// invert post
|
|
for (k = 0; k < n; k++) {
|
|
w[post[k]] = k;
|
|
}
|
|
// loop rows (columns in AT)
|
|
for (i = 0; i < m; i++) {
|
|
// values in column i of AT
|
|
for (k = n, p0 = tptr[i], p1 = tptr[i + 1], p = p0; p < p1; p++) {
|
|
k = Math.min(k, w[tindex[p]]);
|
|
}
|
|
// place row i in linked list k
|
|
w[next + i] = w[head + k];
|
|
w[head + k] = i;
|
|
}
|
|
}
|
|
|
|
// each node in its own set
|
|
for (i = 0; i < n; i++) {
|
|
w[ancestor + i] = i;
|
|
}
|
|
for (k = 0; k < n; k++) {
|
|
// j is the kth node in postordered etree
|
|
j = post[k];
|
|
// check j is not a root
|
|
if (parent[j] !== -1) {
|
|
colcount[parent[j]]--;
|
|
}
|
|
|
|
// J=j for LL'=A case
|
|
for (J = ata ? w[head + k] : j; J !== -1; J = ata ? w[next + J] : -1) {
|
|
for (p = tptr[J]; p < tptr[J + 1]; p++) {
|
|
i = tindex[p];
|
|
const r = (0, _csLeaf.csLeaf)(i, j, w, first, maxfirst, prevleaf, ancestor);
|
|
// check A(i,j) is in skeleton
|
|
if (r.jleaf >= 1) {
|
|
colcount[j]++;
|
|
}
|
|
// check account for overlap in q
|
|
if (r.jleaf === 2) {
|
|
colcount[r.q]--;
|
|
}
|
|
}
|
|
}
|
|
if (parent[j] !== -1) {
|
|
w[ancestor + j] = parent[j];
|
|
}
|
|
}
|
|
// sum up colcount's of each child
|
|
for (j = 0; j < n; j++) {
|
|
if (parent[j] !== -1) {
|
|
colcount[parent[j]] += colcount[j];
|
|
}
|
|
}
|
|
return colcount;
|
|
};
|
|
}); |