jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/cjs/function/algebra/solver/lsolveAll.js
2025-01-02 11:13:50 +08:00

192 lines
5.4 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createLsolveAll = void 0;
var _factory = require("../../../utils/factory.js");
var _solveValidation = require("./utils/solveValidation.js");
const name = 'lsolveAll';
const dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtractScalar', 'equalScalar', 'DenseMatrix'];
const createLsolveAll = exports.createLsolveAll = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
matrix,
divideScalar,
multiplyScalar,
subtractScalar,
equalScalar,
DenseMatrix
} = _ref;
const solveValidation = (0, _solveValidation.createSolveValidation)({
DenseMatrix
});
/**
* Finds all solutions of a linear equation system by forwards substitution. Matrix must be a lower triangular matrix.
*
* `L * x = b`
*
* Syntax:
*
* math.lsolveAll(L, b)
*
* Examples:
*
* const a = [[-2, 3], [2, 1]]
* const b = [11, 9]
* const x = lsolveAll(a, b) // [ [[-5.5], [20]] ]
*
* See also:
*
* lsolve, lup, slu, usolve, lusolve
*
* @param {Matrix, Array} L A N x N matrix or array (L)
* @param {Matrix, Array} b A column vector with the b values
*
* @return {DenseMatrix[] | Array[]} An array of affine-independent column vectors (x) that solve the linear system
*/
return typed(name, {
'SparseMatrix, Array | Matrix': function (m, b) {
return _sparseForwardSubstitution(m, b);
},
'DenseMatrix, Array | Matrix': function (m, b) {
return _denseForwardSubstitution(m, b);
},
'Array, Array | Matrix': function (a, b) {
const m = matrix(a);
const R = _denseForwardSubstitution(m, b);
return R.map(r => r.valueOf());
}
});
function _denseForwardSubstitution(m, b_) {
// the algorithm is derived from
// https://www.overleaf.com/read/csvgqdxggyjv
// array of right-hand sides
const B = [solveValidation(m, b_, true)._data.map(e => e[0])];
const M = m._data;
const rows = m._size[0];
const columns = m._size[1];
// loop columns
for (let i = 0; i < columns; i++) {
let L = B.length;
// loop right-hand sides
for (let k = 0; k < L; k++) {
const b = B[k];
if (!equalScalar(M[i][i], 0)) {
// non-singular row
b[i] = divideScalar(b[i], M[i][i]);
for (let j = i + 1; j < columns; j++) {
// b[j] -= b[i] * M[j,i]
b[j] = subtractScalar(b[j], multiplyScalar(b[i], M[j][i]));
}
} else if (!equalScalar(b[i], 0)) {
// singular row, nonzero RHS
if (k === 0) {
// There is no valid solution
return [];
} else {
// This RHS is invalid but other solutions may still exist
B.splice(k, 1);
k -= 1;
L -= 1;
}
} else if (k === 0) {
// singular row, RHS is zero
const bNew = [...b];
bNew[i] = 1;
for (let j = i + 1; j < columns; j++) {
bNew[j] = subtractScalar(bNew[j], M[j][i]);
}
B.push(bNew);
}
}
}
return B.map(x => new DenseMatrix({
data: x.map(e => [e]),
size: [rows, 1]
}));
}
function _sparseForwardSubstitution(m, b_) {
// array of right-hand sides
const B = [solveValidation(m, b_, true)._data.map(e => e[0])];
const rows = m._size[0];
const columns = m._size[1];
const values = m._values;
const index = m._index;
const ptr = m._ptr;
// loop columns
for (let i = 0; i < columns; i++) {
let L = B.length;
// loop right-hand sides
for (let k = 0; k < L; k++) {
const b = B[k];
// values & indices (column i)
const iValues = [];
const iIndices = [];
// first & last indeces in column
const firstIndex = ptr[i];
const lastIndex = ptr[i + 1];
// find the value at [i, i]
let Mii = 0;
for (let j = firstIndex; j < lastIndex; j++) {
const J = index[j];
// check row
if (J === i) {
Mii = values[j];
} else if (J > i) {
// store lower triangular
iValues.push(values[j]);
iIndices.push(J);
}
}
if (!equalScalar(Mii, 0)) {
// non-singular row
b[i] = divideScalar(b[i], Mii);
for (let j = 0, lastIndex = iIndices.length; j < lastIndex; j++) {
const J = iIndices[j];
b[J] = subtractScalar(b[J], multiplyScalar(b[i], iValues[j]));
}
} else if (!equalScalar(b[i], 0)) {
// singular row, nonzero RHS
if (k === 0) {
// There is no valid solution
return [];
} else {
// This RHS is invalid but other solutions may still exist
B.splice(k, 1);
k -= 1;
L -= 1;
}
} else if (k === 0) {
// singular row, RHS is zero
const bNew = [...b];
bNew[i] = 1;
for (let j = 0, lastIndex = iIndices.length; j < lastIndex; j++) {
const J = iIndices[j];
bNew[J] = subtractScalar(bNew[J], iValues[j]);
}
B.push(bNew);
}
}
}
return B.map(x => new DenseMatrix({
data: x.map(e => [e]),
size: [rows, 1]
}));
}
});