jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/cjs/function/algebra/polynomialRoot.js
2025-01-02 11:13:50 +08:00

128 lines
5.4 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createPolynomialRoot = void 0;
var _factory = require("../../utils/factory.js");
const name = 'polynomialRoot';
const dependencies = ['typed', 'isZero', 'equalScalar', 'add', 'subtract', 'multiply', 'divide', 'sqrt', 'unaryMinus', 'cbrt', 'typeOf', 'im', 're'];
const createPolynomialRoot = exports.createPolynomialRoot = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
isZero,
equalScalar,
add,
subtract,
multiply,
divide,
sqrt,
unaryMinus,
cbrt,
typeOf,
im,
re
} = _ref;
/**
* Finds the numerical values of the distinct roots of a polynomial with real or complex coefficients.
* Currently operates only on linear, quadratic, and cubic polynomials using the standard
* formulas for the roots.
*
* Syntax:
*
* math.polynomialRoot(constant, linearCoeff, quadraticCoeff, cubicCoeff)
*
* Examples:
* // linear
* math.polynomialRoot(6, 3) // [-2]
* math.polynomialRoot(math.complex(6,3), 3) // [-2 - i]
* math.polynomialRoot(math.complex(6,3), math.complex(2,1)) // [-3 + 0i]
* // quadratic
* math.polynomialRoot(2, -3, 1) // [2, 1]
* math.polynomialRoot(8, 8, 2) // [-2]
* math.polynomialRoot(-2, 0, 1) // [1.4142135623730951, -1.4142135623730951]
* math.polynomialRoot(2, -2, 1) // [1 + i, 1 - i]
* math.polynomialRoot(math.complex(1,3), math.complex(-3, -2), 1) // [2 + i, 1 + i]
* // cubic
* math.polynomialRoot(-6, 11, -6, 1) // [1, 3, 2]
* math.polynomialRoot(-8, 0, 0, 1) // [-1 - 1.7320508075688774i, 2, -1 + 1.7320508075688774i]
* math.polynomialRoot(0, 8, 8, 2) // [0, -2]
* math.polynomialRoot(1, 1, 1, 1) // [-1 + 0i, 0 - i, 0 + i]
*
* See also:
* cbrt, sqrt
*
* @param {... number | Complex} coeffs
* The coefficients of the polynomial, starting with with the constant coefficent, followed
* by the linear coefficient and subsequent coefficients of increasing powers.
* @return {Array} The distinct roots of the polynomial
*/
return typed(name, {
'number|Complex, ...number|Complex': (constant, restCoeffs) => {
const coeffs = [constant, ...restCoeffs];
while (coeffs.length > 0 && isZero(coeffs[coeffs.length - 1])) {
coeffs.pop();
}
if (coeffs.length < 2) {
throw new RangeError(`Polynomial [${constant}, ${restCoeffs}] must have a non-zero non-constant coefficient`);
}
switch (coeffs.length) {
case 2:
// linear
return [unaryMinus(divide(coeffs[0], coeffs[1]))];
case 3:
{
// quadratic
const [c, b, a] = coeffs;
const denom = multiply(2, a);
const d1 = multiply(b, b);
const d2 = multiply(4, a, c);
if (equalScalar(d1, d2)) return [divide(unaryMinus(b), denom)];
const discriminant = sqrt(subtract(d1, d2));
return [divide(subtract(discriminant, b), denom), divide(subtract(unaryMinus(discriminant), b), denom)];
}
case 4:
{
// cubic, cf. https://en.wikipedia.org/wiki/Cubic_equation
const [d, c, b, a] = coeffs;
const denom = unaryMinus(multiply(3, a));
const D0_1 = multiply(b, b);
const D0_2 = multiply(3, a, c);
const D1_1 = add(multiply(2, b, b, b), multiply(27, a, a, d));
const D1_2 = multiply(9, a, b, c);
if (equalScalar(D0_1, D0_2) && equalScalar(D1_1, D1_2)) {
return [divide(b, denom)];
}
const Delta0 = subtract(D0_1, D0_2);
const Delta1 = subtract(D1_1, D1_2);
const discriminant1 = add(multiply(18, a, b, c, d), multiply(b, b, c, c));
const discriminant2 = add(multiply(4, b, b, b, d), multiply(4, a, c, c, c), multiply(27, a, a, d, d));
if (equalScalar(discriminant1, discriminant2)) {
return [divide(subtract(multiply(4, a, b, c), add(multiply(9, a, a, d), multiply(b, b, b))), multiply(a, Delta0)),
// simple root
divide(subtract(multiply(9, a, d), multiply(b, c)), multiply(2, Delta0)) // double root
];
}
// OK, we have three distinct roots
let Ccubed;
if (equalScalar(D0_1, D0_2)) {
Ccubed = Delta1;
} else {
Ccubed = divide(add(Delta1, sqrt(subtract(multiply(Delta1, Delta1), multiply(4, Delta0, Delta0, Delta0)))), 2);
}
const allRoots = true;
const rawRoots = cbrt(Ccubed, allRoots).toArray().map(C => divide(add(b, C, divide(Delta0, C)), denom));
return rawRoots.map(r => {
if (typeOf(r) === 'Complex' && equalScalar(re(r), re(r) + im(r))) {
return re(r);
}
return r;
});
}
default:
throw new RangeError(`only implemented for cubic or lower-order polynomials, not ${coeffs}`);
}
}
});
});