jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/cjs/function/algebra/lyap.js
2025-01-02 11:13:50 +08:00

58 lines
1.7 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createLyap = void 0;
var _factory = require("../../utils/factory.js");
const name = 'lyap';
const dependencies = ['typed', 'matrix', 'sylvester', 'multiply', 'transpose'];
const createLyap = exports.createLyap = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
matrix,
sylvester,
multiply,
transpose
} = _ref;
/**
*
* Solves the Continuous-time Lyapunov equation AP+PA'+Q=0 for P, where
* Q is an input matrix. When Q is symmetric, P is also symmetric. Notice
* that different equivalent definitions exist for the Continuous-time
* Lyapunov equation.
* https://en.wikipedia.org/wiki/Lyapunov_equation
*
* Syntax:
*
* math.lyap(A, Q)
*
* Examples:
*
* const A = [[-2, 0], [1, -4]]
* const Q = [[3, 1], [1, 3]]
* const P = math.lyap(A, Q)
*
* See also:
*
* sylvester, schur
*
* @param {Matrix | Array} A Matrix A
* @param {Matrix | Array} Q Matrix Q
* @return {Matrix | Array} Matrix P solution to the Continuous-time Lyapunov equation AP+PA'=Q
*/
return typed(name, {
'Matrix, Matrix': function (A, Q) {
return sylvester(A, transpose(A), multiply(-1, Q));
},
'Array, Matrix': function (A, Q) {
return sylvester(matrix(A), transpose(matrix(A)), multiply(-1, Q));
},
'Matrix, Array': function (A, Q) {
return sylvester(A, transpose(matrix(A)), matrix(multiply(-1, Q)));
},
'Array, Array': function (A, Q) {
return sylvester(matrix(A), transpose(matrix(A)), matrix(multiply(-1, Q))).toArray();
}
});
});