jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/cjs/function/algebra/decomposition/lup.js
2025-01-02 11:13:50 +08:00

382 lines
10 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createLup = void 0;
var _object = require("../../../utils/object.js");
var _factory = require("../../../utils/factory.js");
const name = 'lup';
const dependencies = ['typed', 'matrix', 'abs', 'addScalar', 'divideScalar', 'multiplyScalar', 'subtractScalar', 'larger', 'equalScalar', 'unaryMinus', 'DenseMatrix', 'SparseMatrix', 'Spa'];
const createLup = exports.createLup = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
matrix,
abs,
addScalar,
divideScalar,
multiplyScalar,
subtractScalar,
larger,
equalScalar,
unaryMinus,
DenseMatrix,
SparseMatrix,
Spa
} = _ref;
/**
* Calculate the Matrix LU decomposition with partial pivoting. Matrix `A` is decomposed in two matrices (`L`, `U`) and a
* row permutation vector `p` where `A[p,:] = L * U`
*
* Syntax:
*
* math.lup(A)
*
* Example:
*
* const m = [[2, 1], [1, 4]]
* const r = math.lup(m)
* // r = {
* // L: [[1, 0], [0.5, 1]],
* // U: [[2, 1], [0, 3.5]],
* // P: [0, 1]
* // }
*
* See also:
*
* slu, lsolve, lusolve, usolve
*
* @param {Matrix | Array} A A two dimensional matrix or array for which to get the LUP decomposition.
*
* @return {{L: Array | Matrix, U: Array | Matrix, P: Array.<number>}} The lower triangular matrix, the upper triangular matrix and the permutation matrix.
*/
return typed(name, {
DenseMatrix: function (m) {
return _denseLUP(m);
},
SparseMatrix: function (m) {
return _sparseLUP(m);
},
Array: function (a) {
// create dense matrix from array
const m = matrix(a);
// lup, use matrix implementation
const r = _denseLUP(m);
// result
return {
L: r.L.valueOf(),
U: r.U.valueOf(),
p: r.p
};
}
});
function _denseLUP(m) {
// rows & columns
const rows = m._size[0];
const columns = m._size[1];
// minimum rows and columns
let n = Math.min(rows, columns);
// matrix array, clone original data
const data = (0, _object.clone)(m._data);
// l matrix arrays
const ldata = [];
const lsize = [rows, n];
// u matrix arrays
const udata = [];
const usize = [n, columns];
// vars
let i, j, k;
// permutation vector
const p = [];
for (i = 0; i < rows; i++) {
p[i] = i;
}
// loop columns
for (j = 0; j < columns; j++) {
// skip first column in upper triangular matrix
if (j > 0) {
// loop rows
for (i = 0; i < rows; i++) {
// min i,j
const min = Math.min(i, j);
// v[i, j]
let s = 0;
// loop up to min
for (k = 0; k < min; k++) {
// s = l[i, k] - data[k, j]
s = addScalar(s, multiplyScalar(data[i][k], data[k][j]));
}
data[i][j] = subtractScalar(data[i][j], s);
}
}
// row with larger value in cvector, row >= j
let pi = j;
let pabsv = 0;
let vjj = 0;
// loop rows
for (i = j; i < rows; i++) {
// data @ i, j
const v = data[i][j];
// absolute value
const absv = abs(v);
// value is greater than pivote value
if (larger(absv, pabsv)) {
// store row
pi = i;
// update max value
pabsv = absv;
// value @ [j, j]
vjj = v;
}
}
// swap rows (j <-> pi)
if (j !== pi) {
// swap values j <-> pi in p
p[j] = [p[pi], p[pi] = p[j]][0];
// swap j <-> pi in data
DenseMatrix._swapRows(j, pi, data);
}
// check column is in lower triangular matrix
if (j < rows) {
// loop rows (lower triangular matrix)
for (i = j + 1; i < rows; i++) {
// value @ i, j
const vij = data[i][j];
if (!equalScalar(vij, 0)) {
// update data
data[i][j] = divideScalar(data[i][j], vjj);
}
}
}
}
// loop columns
for (j = 0; j < columns; j++) {
// loop rows
for (i = 0; i < rows; i++) {
// initialize row in arrays
if (j === 0) {
// check row exists in upper triangular matrix
if (i < columns) {
// U
udata[i] = [];
}
// L
ldata[i] = [];
}
// check we are in the upper triangular matrix
if (i < j) {
// check row exists in upper triangular matrix
if (i < columns) {
// U
udata[i][j] = data[i][j];
}
// check column exists in lower triangular matrix
if (j < rows) {
// L
ldata[i][j] = 0;
}
continue;
}
// diagonal value
if (i === j) {
// check row exists in upper triangular matrix
if (i < columns) {
// U
udata[i][j] = data[i][j];
}
// check column exists in lower triangular matrix
if (j < rows) {
// L
ldata[i][j] = 1;
}
continue;
}
// check row exists in upper triangular matrix
if (i < columns) {
// U
udata[i][j] = 0;
}
// check column exists in lower triangular matrix
if (j < rows) {
// L
ldata[i][j] = data[i][j];
}
}
}
// l matrix
const l = new DenseMatrix({
data: ldata,
size: lsize
});
// u matrix
const u = new DenseMatrix({
data: udata,
size: usize
});
// p vector
const pv = [];
for (i = 0, n = p.length; i < n; i++) {
pv[p[i]] = i;
}
// return matrices
return {
L: l,
U: u,
p: pv,
toString: function () {
return 'L: ' + this.L.toString() + '\nU: ' + this.U.toString() + '\nP: ' + this.p;
}
};
}
function _sparseLUP(m) {
// rows & columns
const rows = m._size[0];
const columns = m._size[1];
// minimum rows and columns
const n = Math.min(rows, columns);
// matrix arrays (will not be modified, thanks to permutation vector)
const values = m._values;
const index = m._index;
const ptr = m._ptr;
// l matrix arrays
const lvalues = [];
const lindex = [];
const lptr = [];
const lsize = [rows, n];
// u matrix arrays
const uvalues = [];
const uindex = [];
const uptr = [];
const usize = [n, columns];
// vars
let i, j, k;
// permutation vectors, (current index -> original index) and (original index -> current index)
const pvCo = [];
const pvOc = [];
for (i = 0; i < rows; i++) {
pvCo[i] = i;
pvOc[i] = i;
}
// swap indices in permutation vectors (condition x < y)!
const swapIndeces = function (x, y) {
// find pv indeces getting data from x and y
const kx = pvOc[x];
const ky = pvOc[y];
// update permutation vector current -> original
pvCo[kx] = y;
pvCo[ky] = x;
// update permutation vector original -> current
pvOc[x] = ky;
pvOc[y] = kx;
};
// loop columns
for (j = 0; j < columns; j++) {
// sparse accumulator
const spa = new Spa();
// check lower triangular matrix has a value @ column j
if (j < rows) {
// update ptr
lptr.push(lvalues.length);
// first value in j column for lower triangular matrix
lvalues.push(1);
lindex.push(j);
}
// update ptr
uptr.push(uvalues.length);
// k0 <= k < k1 where k0 = _ptr[j] && k1 = _ptr[j+1]
const k0 = ptr[j];
const k1 = ptr[j + 1];
// copy column j into sparse accumulator
for (k = k0; k < k1; k++) {
// row
i = index[k];
// copy column values into sparse accumulator (use permutation vector)
spa.set(pvCo[i], values[k]);
}
// skip first column in upper triangular matrix
if (j > 0) {
// loop rows in column j (above diagonal)
spa.forEach(0, j - 1, function (k, vkj) {
// loop rows in column k (L)
SparseMatrix._forEachRow(k, lvalues, lindex, lptr, function (i, vik) {
// check row is below k
if (i > k) {
// update spa value
spa.accumulate(i, unaryMinus(multiplyScalar(vik, vkj)));
}
});
});
}
// row with larger value in spa, row >= j
let pi = j;
let vjj = spa.get(j);
let pabsv = abs(vjj);
// loop values in spa (order by row, below diagonal)
spa.forEach(j + 1, rows - 1, function (x, v) {
// absolute value
const absv = abs(v);
// value is greater than pivote value
if (larger(absv, pabsv)) {
// store row
pi = x;
// update max value
pabsv = absv;
// value @ [j, j]
vjj = v;
}
});
// swap rows (j <-> pi)
if (j !== pi) {
// swap values j <-> pi in L
SparseMatrix._swapRows(j, pi, lsize[1], lvalues, lindex, lptr);
// swap values j <-> pi in U
SparseMatrix._swapRows(j, pi, usize[1], uvalues, uindex, uptr);
// swap values in spa
spa.swap(j, pi);
// update permutation vector (swap values @ j, pi)
swapIndeces(j, pi);
}
// loop values in spa (order by row)
spa.forEach(0, rows - 1, function (x, v) {
// check we are above diagonal
if (x <= j) {
// update upper triangular matrix
uvalues.push(v);
uindex.push(x);
} else {
// update value
v = divideScalar(v, vjj);
// check value is non zero
if (!equalScalar(v, 0)) {
// update lower triangular matrix
lvalues.push(v);
lindex.push(x);
}
}
});
}
// update ptrs
uptr.push(uvalues.length);
lptr.push(lvalues.length);
// return matrices
return {
L: new SparseMatrix({
values: lvalues,
index: lindex,
ptr: lptr,
size: lsize
}),
U: new SparseMatrix({
values: uvalues,
index: uindex,
ptr: uptr,
size: usize
}),
p: pvCo,
toString: function () {
return 'L: ' + this.L.toString() + '\nU: ' + this.U.toString() + '\nP: ' + this.p;
}
};
}
});