jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/esm/function/numeric/solveODE.js
2025-01-02 11:13:50 +08:00

284 lines
11 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import _defineProperty from "@babel/runtime/helpers/defineProperty";
function ownKeys(e, r) { var t = Object.keys(e); if (Object.getOwnPropertySymbols) { var o = Object.getOwnPropertySymbols(e); r && (o = o.filter(function (r) { return Object.getOwnPropertyDescriptor(e, r).enumerable; })), t.push.apply(t, o); } return t; }
function _objectSpread(e) { for (var r = 1; r < arguments.length; r++) { var t = null != arguments[r] ? arguments[r] : {}; r % 2 ? ownKeys(Object(t), !0).forEach(function (r) { _defineProperty(e, r, t[r]); }) : Object.getOwnPropertyDescriptors ? Object.defineProperties(e, Object.getOwnPropertyDescriptors(t)) : ownKeys(Object(t)).forEach(function (r) { Object.defineProperty(e, r, Object.getOwnPropertyDescriptor(t, r)); }); } return e; }
import { isUnit, isNumber, isBigNumber } from '../../utils/is.js';
import { factory } from '../../utils/factory.js';
var name = 'solveODE';
var dependencies = ['typed', 'add', 'subtract', 'multiply', 'divide', 'max', 'map', 'abs', 'isPositive', 'isNegative', 'larger', 'smaller', 'matrix', 'bignumber', 'unaryMinus'];
export var createSolveODE = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
add,
subtract,
multiply,
divide,
max,
map,
abs,
isPositive,
isNegative,
larger,
smaller,
matrix,
bignumber,
unaryMinus
} = _ref;
/**
* Numerical Integration of Ordinary Differential Equations
*
* Two variable step methods are provided:
* - "RK23": BogackiShampine method
* - "RK45": Dormand-Prince method RK5(4)7M (default)
*
* The arguments are expected as follows.
*
* - `func` should be the forcing function `f(t, y)`
* - `tspan` should be a vector of two numbers or units `[tStart, tEnd]`
* - `y0` the initial state values, should be a scalar or a flat array
* - `options` should be an object with the following information:
* - `method` ('RK45'): ['RK23', 'RK45']
* - `tol` (1e-3): Numeric tolerance of the method, the solver keeps the error estimates less than this value
* - `firstStep`: Initial step size
* - `minStep`: minimum step size of the method
* - `maxStep`: maximum step size of the method
* - `minDelta` (0.2): minimum ratio of change for the step
* - `maxDelta` (5): maximum ratio of change for the step
* - `maxIter` (1e4): maximum number of iterations
*
* The returned value is an object with `{t, y}` please note that even though `t` means time, it can represent any other independant variable like `x`:
* - `t` an array of size `[n]`
* - `y` the states array can be in two ways
* - **if `y0` is a scalar:** returns an array-like of size `[n]`
* - **if `y0` is a flat array-like of size [m]:** returns an array like of size `[n, m]`
*
* Syntax:
*
* math.solveODE(func, tspan, y0)
* math.solveODE(func, tspan, y0, options)
*
* Examples:
*
* function func(t, y) {return y}
* const tspan = [0, 4]
* const y0 = 1
* math.solveODE(func, tspan, y0)
* math.solveODE(func, tspan, [1, 2])
* math.solveODE(func, tspan, y0, { method:"RK23", maxStep:0.1 })
*
* See also:
*
* derivative, simplifyCore
*
* @param {function} func The forcing function f(t,y)
* @param {Array | Matrix} tspan The time span
* @param {number | BigNumber | Unit | Array | Matrix} y0 The initial value
* @param {Object} [options] Optional configuration options
* @return {Object} Return an object with t and y values as arrays
*/
function _rk(butcherTableau) {
// generates an adaptive runge kutta method from it's butcher tableau
return function (f, tspan, y0, options) {
// adaptive runge kutta methods
var wrongTSpan = !(tspan.length === 2 && (tspan.every(isNumOrBig) || tspan.every(isUnit)));
if (wrongTSpan) {
throw new Error('"tspan" must be an Array of two numeric values or two units [tStart, tEnd]');
}
var t0 = tspan[0]; // initial time
var tf = tspan[1]; // final time
var isForwards = larger(tf, t0);
var firstStep = options.firstStep;
if (firstStep !== undefined && !isPositive(firstStep)) {
throw new Error('"firstStep" must be positive');
}
var maxStep = options.maxStep;
if (maxStep !== undefined && !isPositive(maxStep)) {
throw new Error('"maxStep" must be positive');
}
var minStep = options.minStep;
if (minStep && isNegative(minStep)) {
throw new Error('"minStep" must be positive or zero');
}
var timeVars = [t0, tf, firstStep, minStep, maxStep].filter(x => x !== undefined);
if (!(timeVars.every(isNumOrBig) || timeVars.every(isUnit))) {
throw new Error('Inconsistent type of "t" dependant variables');
}
var steps = 1; // divide time in this number of steps
var tol = options.tol ? options.tol : 1e-4; // define a tolerance (must be an option)
var minDelta = options.minDelta ? options.minDelta : 0.2;
var maxDelta = options.maxDelta ? options.maxDelta : 5;
var maxIter = options.maxIter ? options.maxIter : 10000; // stop inifite evaluation if something goes wrong
var hasBigNumbers = [t0, tf, ...y0, maxStep, minStep].some(isBigNumber);
var [a, c, b, bp] = hasBigNumbers ? [bignumber(butcherTableau.a), bignumber(butcherTableau.c), bignumber(butcherTableau.b), bignumber(butcherTableau.bp)] : [butcherTableau.a, butcherTableau.c, butcherTableau.b, butcherTableau.bp];
var h = firstStep ? isForwards ? firstStep : unaryMinus(firstStep) : divide(subtract(tf, t0), steps); // define the first step size
var t = [t0]; // start the time array
var y = [y0]; // start the solution array
var deltaB = subtract(b, bp); // b - bp
var n = 0;
var iter = 0;
var ongoing = _createOngoing(isForwards);
var trimStep = _createTrimStep(isForwards);
// iterate unitil it reaches either the final time or maximum iterations
while (ongoing(t[n], tf)) {
var k = [];
// trim the time step so that it doesn't overshoot
h = trimStep(t[n], tf, h);
// calculate the first value of k
k.push(f(t[n], y[n]));
// calculate the rest of the values of k
for (var i = 1; i < c.length; ++i) {
k.push(f(add(t[n], multiply(c[i], h)), add(y[n], multiply(h, a[i], k))));
}
// estimate the error by comparing solutions of different orders
var TE = max(abs(map(multiply(deltaB, k), X => isUnit(X) ? X.value : X)));
if (TE < tol && tol / TE > 1 / 4) {
// push solution if within tol
t.push(add(t[n], h));
y.push(add(y[n], multiply(h, b, k)));
n++;
}
// estimate the delta value that will affect the step size
var delta = 0.84 * (tol / TE) ** (1 / 5);
if (smaller(delta, minDelta)) {
delta = minDelta;
} else if (larger(delta, maxDelta)) {
delta = maxDelta;
}
delta = hasBigNumbers ? bignumber(delta) : delta;
h = multiply(h, delta);
if (maxStep && larger(abs(h), maxStep)) {
h = isForwards ? maxStep : unaryMinus(maxStep);
} else if (minStep && smaller(abs(h), minStep)) {
h = isForwards ? minStep : unaryMinus(minStep);
}
iter++;
if (iter > maxIter) {
throw new Error('Maximum number of iterations reached, try changing options');
}
}
return {
t,
y
};
};
}
function _rk23(f, tspan, y0, options) {
// BogackiShampine method
// Define the butcher table
var a = [[], [1 / 2], [0, 3 / 4], [2 / 9, 1 / 3, 4 / 9]];
var c = [null, 1 / 2, 3 / 4, 1];
var b = [2 / 9, 1 / 3, 4 / 9, 0];
var bp = [7 / 24, 1 / 4, 1 / 3, 1 / 8];
var butcherTableau = {
a,
c,
b,
bp
};
// Solve an adaptive step size rk method
return _rk(butcherTableau)(f, tspan, y0, options);
}
function _rk45(f, tspan, y0, options) {
// Dormand Prince method
// Define the butcher tableau
var a = [[], [1 / 5], [3 / 40, 9 / 40], [44 / 45, -56 / 15, 32 / 9], [19372 / 6561, -25360 / 2187, 64448 / 6561, -212 / 729], [9017 / 3168, -355 / 33, 46732 / 5247, 49 / 176, -5103 / 18656], [35 / 384, 0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84]];
var c = [null, 1 / 5, 3 / 10, 4 / 5, 8 / 9, 1, 1];
var b = [35 / 384, 0, 500 / 1113, 125 / 192, -2187 / 6784, 11 / 84, 0];
var bp = [5179 / 57600, 0, 7571 / 16695, 393 / 640, -92097 / 339200, 187 / 2100, 1 / 40];
var butcherTableau = {
a,
c,
b,
bp
};
// Solve an adaptive step size rk method
return _rk(butcherTableau)(f, tspan, y0, options);
}
function _solveODE(f, tspan, y0, opt) {
var method = opt.method ? opt.method : 'RK45';
var methods = {
RK23: _rk23,
RK45: _rk45
};
if (method.toUpperCase() in methods) {
var methodOptions = _objectSpread({}, opt); // clone the options object
delete methodOptions.method; // delete the method as it won't be needed
return methods[method.toUpperCase()](f, tspan, y0, methodOptions);
} else {
// throw an error indicating there is no such method
var methodsWithQuotes = Object.keys(methods).map(x => "\"".concat(x, "\""));
// generates a string of methods like: "BDF", "RK23" and "RK45"
var availableMethodsString = "".concat(methodsWithQuotes.slice(0, -1).join(', '), " and ").concat(methodsWithQuotes.slice(-1));
throw new Error("Unavailable method \"".concat(method, "\". Available methods are ").concat(availableMethodsString));
}
}
function _createOngoing(isForwards) {
// returns the correct function to test if it's still iterating
return isForwards ? smaller : larger;
}
function _createTrimStep(isForwards) {
var outOfBounds = isForwards ? larger : smaller;
return function (t, tf, h) {
var next = add(t, h);
return outOfBounds(next, tf) ? subtract(tf, t) : h;
};
}
function isNumOrBig(x) {
// checks if it's a number or bignumber
return isBigNumber(x) || isNumber(x);
}
function _matrixSolveODE(f, T, y0, options) {
// receives matrices and returns matrices
var sol = _solveODE(f, T.toArray(), y0.toArray(), options);
return {
t: matrix(sol.t),
y: matrix(sol.y)
};
}
return typed('solveODE', {
'function, Array, Array, Object': _solveODE,
'function, Matrix, Matrix, Object': _matrixSolveODE,
'function, Array, Array': (f, T, y0) => _solveODE(f, T, y0, {}),
'function, Matrix, Matrix': (f, T, y0) => _matrixSolveODE(f, T, y0, {}),
'function, Array, number | BigNumber | Unit': (f, T, y0) => {
var sol = _solveODE(f, T, [y0], {});
return {
t: sol.t,
y: sol.y.map(Y => Y[0])
};
},
'function, Matrix, number | BigNumber | Unit': (f, T, y0) => {
var sol = _solveODE(f, T.toArray(), [y0], {});
return {
t: matrix(sol.t),
y: matrix(sol.y.map(Y => Y[0]))
};
},
'function, Array, number | BigNumber | Unit, Object': (f, T, y0, options) => {
var sol = _solveODE(f, T, [y0], options);
return {
t: sol.t,
y: sol.y.map(Y => Y[0])
};
},
'function, Matrix, number | BigNumber | Unit, Object': (f, T, y0, options) => {
var sol = _solveODE(f, T.toArray(), [y0], options);
return {
t: matrix(sol.t),
y: matrix(sol.y.map(Y => Y[0]))
};
}
});
});