jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/esm/function/algebra/sparse/csDfs.js
2025-01-02 11:13:50 +08:00

76 lines
2.5 KiB
JavaScript

// Copyright (c) 2006-2024, Timothy A. Davis, All Rights Reserved.
// SPDX-License-Identifier: LGPL-2.1+
// https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/dev/CSparse/Source
import { csMarked } from './csMarked.js';
import { csMark } from './csMark.js';
import { csUnflip } from './csUnflip.js';
/**
* Depth-first search computes the nonzero pattern xi of the directed graph G (Matrix) starting
* at nodes in B (see csReach()).
*
* @param {Number} j The starting node for the DFS algorithm
* @param {Matrix} g The G matrix to search, ptr array modified, then restored
* @param {Number} top Start index in stack xi[top..n-1]
* @param {Number} k The kth column in B
* @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
* The first n entries is the nonzero pattern, the last n entries is the stack
* @param {Array} pinv The inverse row permutation vector, must be null for L * x = b
*
* @return {Number} New value of top
*/
export function csDfs(j, g, top, xi, pinv) {
// g arrays
var index = g._index;
var ptr = g._ptr;
var size = g._size;
// columns
var n = size[1];
// vars
var i, p, p2;
// initialize head
var head = 0;
// initialize the recursion stack
xi[0] = j;
// loop
while (head >= 0) {
// get j from the top of the recursion stack
j = xi[head];
// apply permutation vector
var jnew = pinv ? pinv[j] : j;
// check node j is marked
if (!csMarked(ptr, j)) {
// mark node j as visited
csMark(ptr, j);
// update stack (last n entries in xi)
xi[n + head] = jnew < 0 ? 0 : csUnflip(ptr[jnew]);
}
// node j done if no unvisited neighbors
var done = 1;
// examine all neighbors of j, stack (last n entries in xi)
for (p = xi[n + head], p2 = jnew < 0 ? 0 : csUnflip(ptr[jnew + 1]); p < p2; p++) {
// consider neighbor node i
i = index[p];
// check we have visited node i, skip it
if (csMarked(ptr, i)) {
continue;
}
// pause depth-first search of node j, update stack (last n entries in xi)
xi[n + head] = p;
// start dfs at node i
xi[++head] = i;
// node j is not done
done = 0;
// break, to start dfs(i)
break;
}
// check depth-first search at node j is done
if (done) {
// remove j from the recursion stack
head--;
// and place in the output stack
xi[--top] = j;
}
}
return top;
}