157 lines
4.0 KiB
JavaScript
157 lines
4.0 KiB
JavaScript
// Copyright (c) 2006-2024, Timothy A. Davis, All Rights Reserved.
|
|
// SPDX-License-Identifier: LGPL-2.1+
|
|
// https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/dev/CSparse/Source
|
|
import { factory } from '../../../utils/factory.js';
|
|
import { csEreach } from './csEreach.js';
|
|
import { createCsSymperm } from './csSymperm.js';
|
|
var name = 'csChol';
|
|
var dependencies = ['divideScalar', 'sqrt', 'subtract', 'multiply', 'im', 're', 'conj', 'equal', 'smallerEq', 'SparseMatrix'];
|
|
export var createCsChol = /* #__PURE__ */factory(name, dependencies, _ref => {
|
|
var {
|
|
divideScalar,
|
|
sqrt,
|
|
subtract,
|
|
multiply,
|
|
im,
|
|
re,
|
|
conj,
|
|
equal,
|
|
smallerEq,
|
|
SparseMatrix
|
|
} = _ref;
|
|
var csSymperm = createCsSymperm({
|
|
conj,
|
|
SparseMatrix
|
|
});
|
|
|
|
/**
|
|
* Computes the Cholesky factorization of matrix A. It computes L and P so
|
|
* L * L' = P * A * P'
|
|
*
|
|
* @param {Matrix} m The A Matrix to factorize, only upper triangular part used
|
|
* @param {Object} s The symbolic analysis from cs_schol()
|
|
*
|
|
* @return {Number} The numeric Cholesky factorization of A or null
|
|
*/
|
|
return function csChol(m, s) {
|
|
// validate input
|
|
if (!m) {
|
|
return null;
|
|
}
|
|
// m arrays
|
|
var size = m._size;
|
|
// columns
|
|
var n = size[1];
|
|
// symbolic analysis result
|
|
var parent = s.parent;
|
|
var cp = s.cp;
|
|
var pinv = s.pinv;
|
|
// L arrays
|
|
var lvalues = [];
|
|
var lindex = [];
|
|
var lptr = [];
|
|
// L
|
|
var L = new SparseMatrix({
|
|
values: lvalues,
|
|
index: lindex,
|
|
ptr: lptr,
|
|
size: [n, n]
|
|
});
|
|
// vars
|
|
var c = []; // (2 * n)
|
|
var x = []; // (n)
|
|
// compute C = P * A * P'
|
|
var cm = pinv ? csSymperm(m, pinv, 1) : m;
|
|
// C matrix arrays
|
|
var cvalues = cm._values;
|
|
var cindex = cm._index;
|
|
var cptr = cm._ptr;
|
|
// vars
|
|
var k, p;
|
|
// initialize variables
|
|
for (k = 0; k < n; k++) {
|
|
lptr[k] = c[k] = cp[k];
|
|
}
|
|
// compute L(k,:) for L*L' = C
|
|
for (k = 0; k < n; k++) {
|
|
// nonzero pattern of L(k,:)
|
|
var top = csEreach(cm, k, parent, c);
|
|
// x (0:k) is now zero
|
|
x[k] = 0;
|
|
// x = full(triu(C(:,k)))
|
|
for (p = cptr[k]; p < cptr[k + 1]; p++) {
|
|
if (cindex[p] <= k) {
|
|
x[cindex[p]] = cvalues[p];
|
|
}
|
|
}
|
|
// d = C(k,k)
|
|
var d = x[k];
|
|
// clear x for k+1st iteration
|
|
x[k] = 0;
|
|
// solve L(0:k-1,0:k-1) * x = C(:,k)
|
|
for (; top < n; top++) {
|
|
// s[top..n-1] is pattern of L(k,:)
|
|
var i = s[top];
|
|
// L(k,i) = x (i) / L(i,i)
|
|
var lki = divideScalar(x[i], lvalues[lptr[i]]);
|
|
// clear x for k+1st iteration
|
|
x[i] = 0;
|
|
for (p = lptr[i] + 1; p < c[i]; p++) {
|
|
// row
|
|
var r = lindex[p];
|
|
// update x[r]
|
|
x[r] = subtract(x[r], multiply(lvalues[p], lki));
|
|
}
|
|
// d = d - L(k,i)*L(k,i)
|
|
d = subtract(d, multiply(lki, conj(lki)));
|
|
p = c[i]++;
|
|
// store L(k,i) in column i
|
|
lindex[p] = k;
|
|
lvalues[p] = conj(lki);
|
|
}
|
|
// compute L(k,k)
|
|
if (smallerEq(re(d), 0) || !equal(im(d), 0)) {
|
|
// not pos def
|
|
return null;
|
|
}
|
|
p = c[k]++;
|
|
// store L(k,k) = sqrt(d) in column k
|
|
lindex[p] = k;
|
|
lvalues[p] = sqrt(d);
|
|
}
|
|
// finalize L
|
|
lptr[n] = cp[n];
|
|
// P matrix
|
|
var P;
|
|
// check we need to calculate P
|
|
if (pinv) {
|
|
// P arrays
|
|
var pvalues = [];
|
|
var pindex = [];
|
|
var pptr = [];
|
|
// create P matrix
|
|
for (p = 0; p < n; p++) {
|
|
// initialize ptr (one value per column)
|
|
pptr[p] = p;
|
|
// index (apply permutation vector)
|
|
pindex.push(pinv[p]);
|
|
// value 1
|
|
pvalues.push(1);
|
|
}
|
|
// update ptr
|
|
pptr[n] = n;
|
|
// P
|
|
P = new SparseMatrix({
|
|
values: pvalues,
|
|
index: pindex,
|
|
ptr: pptr,
|
|
size: [n, n]
|
|
});
|
|
}
|
|
// return L & P
|
|
return {
|
|
L,
|
|
P
|
|
};
|
|
};
|
|
}); |