jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/cjs/utils/array.js
2025-01-02 11:13:50 +08:00

872 lines
25 KiB
JavaScript

"use strict";
var _interopRequireDefault = require("@babel/runtime/helpers/interopRequireDefault");
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.arraySize = arraySize;
exports.broadcastArrays = broadcastArrays;
exports.broadcastSizes = broadcastSizes;
exports.broadcastTo = broadcastTo;
exports.checkBroadcastingRules = checkBroadcastingRules;
exports.clone = clone;
exports.concat = concat;
exports.filter = filter;
exports.filterRegExp = filterRegExp;
exports.flatten = flatten;
exports.forEach = forEach;
exports.generalize = generalize;
exports.get = get;
exports.getArrayDataType = getArrayDataType;
exports.identify = identify;
exports.initial = initial;
exports.isEmptyIndex = isEmptyIndex;
exports.join = join;
exports.last = last;
exports.map = map;
exports.processSizesWildcard = processSizesWildcard;
exports.recurse = recurse;
exports.reshape = reshape;
exports.resize = resize;
exports.squeeze = squeeze;
exports.stretch = stretch;
exports.unsqueeze = unsqueeze;
exports.validate = validate;
exports.validateIndex = validateIndex;
exports.validateIndexSourceSize = validateIndexSourceSize;
var _extends2 = _interopRequireDefault(require("@babel/runtime/helpers/extends"));
var _number = require("./number.js");
var _is = require("./is.js");
var _string = require("./string.js");
var _DimensionError = require("../error/DimensionError.js");
var _IndexError = require("../error/IndexError.js");
var _object = require("./object.js");
/**
* Calculate the size of a multi dimensional array.
* This function checks the size of the first entry, it does not validate
* whether all dimensions match. (use function `validate` for that)
* @param {Array} x
* @Return {Number[]} size
*/
function arraySize(x) {
const s = [];
while (Array.isArray(x)) {
s.push(x.length);
x = x[0];
}
return s;
}
/**
* Recursively validate whether each element in a multi dimensional array
* has a size corresponding to the provided size array.
* @param {Array} array Array to be validated
* @param {number[]} size Array with the size of each dimension
* @param {number} dim Current dimension
* @throws DimensionError
* @private
*/
function _validate(array, size, dim) {
let i;
const len = array.length;
if (len !== size[dim]) {
throw new _DimensionError.DimensionError(len, size[dim]);
}
if (dim < size.length - 1) {
// recursively validate each child array
const dimNext = dim + 1;
for (i = 0; i < len; i++) {
const child = array[i];
if (!Array.isArray(child)) {
throw new _DimensionError.DimensionError(size.length - 1, size.length, '<');
}
_validate(array[i], size, dimNext);
}
} else {
// last dimension. none of the childs may be an array
for (i = 0; i < len; i++) {
if (Array.isArray(array[i])) {
throw new _DimensionError.DimensionError(size.length + 1, size.length, '>');
}
}
}
}
/**
* Validate whether each element in a multi dimensional array has
* a size corresponding to the provided size array.
* @param {Array} array Array to be validated
* @param {number[]} size Array with the size of each dimension
* @throws DimensionError
*/
function validate(array, size) {
const isScalar = size.length === 0;
if (isScalar) {
// scalar
if (Array.isArray(array)) {
throw new _DimensionError.DimensionError(array.length, 0);
}
} else {
// array
_validate(array, size, 0);
}
}
/**
* Validate whether the source of the index matches the size of the Array
* @param {Array | Matrix} array Array to be validated
* @param {Index} index Index with the source information to validate
* @throws DimensionError
*/
function validateIndexSourceSize(value, index) {
const valueSize = value.isMatrix ? value._size : arraySize(value);
const sourceSize = index._sourceSize;
// checks if the source size is not null and matches the valueSize
sourceSize.forEach((sourceDim, i) => {
if (sourceDim !== null && sourceDim !== valueSize[i]) {
throw new _DimensionError.DimensionError(sourceDim, valueSize[i]);
}
});
}
/**
* Test whether index is an integer number with index >= 0 and index < length
* when length is provided
* @param {number} index Zero-based index
* @param {number} [length] Length of the array
*/
function validateIndex(index, length) {
if (index !== undefined) {
if (!(0, _is.isNumber)(index) || !(0, _number.isInteger)(index)) {
throw new TypeError('Index must be an integer (value: ' + index + ')');
}
if (index < 0 || typeof length === 'number' && index >= length) {
throw new _IndexError.IndexError(index, length);
}
}
}
/**
* Test if and index has empty values
* @param {number} index Zero-based index
*/
function isEmptyIndex(index) {
for (let i = 0; i < index._dimensions.length; ++i) {
const dimension = index._dimensions[i];
if (dimension._data && (0, _is.isArray)(dimension._data)) {
if (dimension._size[0] === 0) {
return true;
}
} else if (dimension.isRange) {
if (dimension.start === dimension.end) {
return true;
}
} else if ((0, _is.isString)(dimension)) {
if (dimension.length === 0) {
return true;
}
}
}
return false;
}
/**
* Resize a multi dimensional array. The resized array is returned.
* @param {Array | number} array Array to be resized
* @param {number[]} size Array with the size of each dimension
* @param {*} [defaultValue=0] Value to be filled in in new entries,
* zero by default. Specify for example `null`,
* to clearly see entries that are not explicitly
* set.
* @return {Array} array The resized array
*/
function resize(array, size, defaultValue) {
// check the type of the arguments
if (!Array.isArray(size)) {
throw new TypeError('Array expected');
}
if (size.length === 0) {
throw new Error('Resizing to scalar is not supported');
}
// check whether size contains positive integers
size.forEach(function (value) {
if (!(0, _is.isNumber)(value) || !(0, _number.isInteger)(value) || value < 0) {
throw new TypeError('Invalid size, must contain positive integers ' + '(size: ' + (0, _string.format)(size) + ')');
}
});
// convert number to an array
if ((0, _is.isNumber)(array) || (0, _is.isBigNumber)(array)) {
array = [array];
}
// recursively resize the array
const _defaultValue = defaultValue !== undefined ? defaultValue : 0;
_resize(array, size, 0, _defaultValue);
return array;
}
/**
* Recursively resize a multi dimensional array
* @param {Array} array Array to be resized
* @param {number[]} size Array with the size of each dimension
* @param {number} dim Current dimension
* @param {*} [defaultValue] Value to be filled in in new entries,
* undefined by default.
* @private
*/
function _resize(array, size, dim, defaultValue) {
let i;
let elem;
const oldLen = array.length;
const newLen = size[dim];
const minLen = Math.min(oldLen, newLen);
// apply new length
array.length = newLen;
if (dim < size.length - 1) {
// non-last dimension
const dimNext = dim + 1;
// resize existing child arrays
for (i = 0; i < minLen; i++) {
// resize child array
elem = array[i];
if (!Array.isArray(elem)) {
elem = [elem]; // add a dimension
array[i] = elem;
}
_resize(elem, size, dimNext, defaultValue);
}
// create new child arrays
for (i = minLen; i < newLen; i++) {
// get child array
elem = [];
array[i] = elem;
// resize new child array
_resize(elem, size, dimNext, defaultValue);
}
} else {
// last dimension
// remove dimensions of existing values
for (i = 0; i < minLen; i++) {
while (Array.isArray(array[i])) {
array[i] = array[i][0];
}
}
// fill new elements with the default value
for (i = minLen; i < newLen; i++) {
array[i] = defaultValue;
}
}
}
/**
* Re-shape a multi dimensional array to fit the specified dimensions
* @param {Array} array Array to be reshaped
* @param {number[]} sizes List of sizes for each dimension
* @returns {Array} Array whose data has been formatted to fit the
* specified dimensions
*
* @throws {DimensionError} If the product of the new dimension sizes does
* not equal that of the old ones
*/
function reshape(array, sizes) {
const flatArray = flatten(array);
const currentLength = flatArray.length;
if (!Array.isArray(array) || !Array.isArray(sizes)) {
throw new TypeError('Array expected');
}
if (sizes.length === 0) {
throw new _DimensionError.DimensionError(0, currentLength, '!=');
}
sizes = processSizesWildcard(sizes, currentLength);
const newLength = product(sizes);
if (currentLength !== newLength) {
throw new _DimensionError.DimensionError(newLength, currentLength, '!=');
}
try {
return _reshape(flatArray, sizes);
} catch (e) {
if (e instanceof _DimensionError.DimensionError) {
throw new _DimensionError.DimensionError(newLength, currentLength, '!=');
}
throw e;
}
}
/**
* Replaces the wildcard -1 in the sizes array.
* @param {number[]} sizes List of sizes for each dimension. At most on wildcard.
* @param {number} currentLength Number of elements in the array.
* @throws {Error} If more than one wildcard or unable to replace it.
* @returns {number[]} The sizes array with wildcard replaced.
*/
function processSizesWildcard(sizes, currentLength) {
const newLength = product(sizes);
const processedSizes = sizes.slice();
const WILDCARD = -1;
const wildCardIndex = sizes.indexOf(WILDCARD);
const isMoreThanOneWildcard = sizes.indexOf(WILDCARD, wildCardIndex + 1) >= 0;
if (isMoreThanOneWildcard) {
throw new Error('More than one wildcard in sizes');
}
const hasWildcard = wildCardIndex >= 0;
const canReplaceWildcard = currentLength % newLength === 0;
if (hasWildcard) {
if (canReplaceWildcard) {
processedSizes[wildCardIndex] = -currentLength / newLength;
} else {
throw new Error('Could not replace wildcard, since ' + currentLength + ' is no multiple of ' + -newLength);
}
}
return processedSizes;
}
/**
* Computes the product of all array elements.
* @param {number[]} array Array of factors
* @returns {number} Product of all elements
*/
function product(array) {
return array.reduce((prev, curr) => prev * curr, 1);
}
/**
* Iteratively re-shape a multi dimensional array to fit the specified dimensions
* @param {Array} array Array to be reshaped
* @param {number[]} sizes List of sizes for each dimension
* @returns {Array} Array whose data has been formatted to fit the
* specified dimensions
*/
function _reshape(array, sizes) {
// testing if there are enough elements for the requested shape
let tmpArray = array;
let tmpArray2;
// for each dimensions starting by the last one and ignoring the first one
for (let sizeIndex = sizes.length - 1; sizeIndex > 0; sizeIndex--) {
const size = sizes[sizeIndex];
tmpArray2 = [];
// aggregate the elements of the current tmpArray in elements of the requested size
const length = tmpArray.length / size;
for (let i = 0; i < length; i++) {
tmpArray2.push(tmpArray.slice(i * size, (i + 1) * size));
}
// set it as the new tmpArray for the next loop turn or for return
tmpArray = tmpArray2;
}
return tmpArray;
}
/**
* Squeeze a multi dimensional array
* @param {Array} array
* @param {Array} [size]
* @returns {Array} returns the array itself
*/
function squeeze(array, size) {
const s = size || arraySize(array);
// squeeze outer dimensions
while (Array.isArray(array) && array.length === 1) {
array = array[0];
s.shift();
}
// find the first dimension to be squeezed
let dims = s.length;
while (s[dims - 1] === 1) {
dims--;
}
// squeeze inner dimensions
if (dims < s.length) {
array = _squeeze(array, dims, 0);
s.length = dims;
}
return array;
}
/**
* Recursively squeeze a multi dimensional array
* @param {Array} array
* @param {number} dims Required number of dimensions
* @param {number} dim Current dimension
* @returns {Array | *} Returns the squeezed array
* @private
*/
function _squeeze(array, dims, dim) {
let i, ii;
if (dim < dims) {
const next = dim + 1;
for (i = 0, ii = array.length; i < ii; i++) {
array[i] = _squeeze(array[i], dims, next);
}
} else {
while (Array.isArray(array)) {
array = array[0];
}
}
return array;
}
/**
* Unsqueeze a multi dimensional array: add dimensions when missing
*
* Paramter `size` will be mutated to match the new, unqueezed matrix size.
*
* @param {Array} array
* @param {number} dims Desired number of dimensions of the array
* @param {number} [outer] Number of outer dimensions to be added
* @param {Array} [size] Current size of array.
* @returns {Array} returns the array itself
* @private
*/
function unsqueeze(array, dims, outer, size) {
const s = size || arraySize(array);
// unsqueeze outer dimensions
if (outer) {
for (let i = 0; i < outer; i++) {
array = [array];
s.unshift(1);
}
}
// unsqueeze inner dimensions
array = _unsqueeze(array, dims, 0);
while (s.length < dims) {
s.push(1);
}
return array;
}
/**
* Recursively unsqueeze a multi dimensional array
* @param {Array} array
* @param {number} dims Required number of dimensions
* @param {number} dim Current dimension
* @returns {Array | *} Returns the squeezed array
* @private
*/
function _unsqueeze(array, dims, dim) {
let i, ii;
if (Array.isArray(array)) {
const next = dim + 1;
for (i = 0, ii = array.length; i < ii; i++) {
array[i] = _unsqueeze(array[i], dims, next);
}
} else {
for (let d = dim; d < dims; d++) {
array = [array];
}
}
return array;
}
/**
* Flatten a multi dimensional array, put all elements in a one dimensional
* array
* @param {Array} array A multi dimensional array
* @return {Array} The flattened array (1 dimensional)
*/
function flatten(array) {
if (!Array.isArray(array)) {
// if not an array, return as is
return array;
}
const flat = [];
array.forEach(function callback(value) {
if (Array.isArray(value)) {
value.forEach(callback); // traverse through sub-arrays recursively
} else {
flat.push(value);
}
});
return flat;
}
/**
* A safe map
* @param {Array} array
* @param {function} callback
*/
function map(array, callback) {
return Array.prototype.map.call(array, callback);
}
/**
* A safe forEach
* @param {Array} array
* @param {function} callback
*/
function forEach(array, callback) {
Array.prototype.forEach.call(array, callback);
}
/**
* A safe filter
* @param {Array} array
* @param {function} callback
*/
function filter(array, callback) {
if (arraySize(array).length !== 1) {
throw new Error('Only one dimensional matrices supported');
}
return Array.prototype.filter.call(array, callback);
}
/**
* Filter values in a callback given a regular expression
* @param {Array} array
* @param {RegExp} regexp
* @return {Array} Returns the filtered array
* @private
*/
function filterRegExp(array, regexp) {
if (arraySize(array).length !== 1) {
throw new Error('Only one dimensional matrices supported');
}
return Array.prototype.filter.call(array, entry => regexp.test(entry));
}
/**
* A safe join
* @param {Array} array
* @param {string} separator
*/
function join(array, separator) {
return Array.prototype.join.call(array, separator);
}
/**
* Assign a numeric identifier to every element of a sorted array
* @param {Array} a An array
* @return {Array} An array of objects containing the original value and its identifier
*/
function identify(a) {
if (!Array.isArray(a)) {
throw new TypeError('Array input expected');
}
if (a.length === 0) {
return a;
}
const b = [];
let count = 0;
b[0] = {
value: a[0],
identifier: 0
};
for (let i = 1; i < a.length; i++) {
if (a[i] === a[i - 1]) {
count++;
} else {
count = 0;
}
b.push({
value: a[i],
identifier: count
});
}
return b;
}
/**
* Remove the numeric identifier from the elements
* @param {array} a An array
* @return {array} An array of values without identifiers
*/
function generalize(a) {
if (!Array.isArray(a)) {
throw new TypeError('Array input expected');
}
if (a.length === 0) {
return a;
}
const b = [];
for (let i = 0; i < a.length; i++) {
b.push(a[i].value);
}
return b;
}
/**
* Check the datatype of a given object
* This is a low level implementation that should only be used by
* parent Matrix classes such as SparseMatrix or DenseMatrix
* This method does not validate Array Matrix shape
* @param {Array} array
* @param {function} typeOf Callback function to use to determine the type of a value
* @return {string}
*/
function getArrayDataType(array, typeOf) {
let type; // to hold type info
let length = 0; // to hold length value to ensure it has consistent sizes
for (let i = 0; i < array.length; i++) {
const item = array[i];
const isArray = Array.isArray(item);
// Saving the target matrix row size
if (i === 0 && isArray) {
length = item.length;
}
// If the current item is an array but the length does not equal the targetVectorSize
if (isArray && item.length !== length) {
return undefined;
}
const itemType = isArray ? getArrayDataType(item, typeOf) // recurse into a nested array
: typeOf(item);
if (type === undefined) {
type = itemType; // first item
} else if (type !== itemType) {
return 'mixed';
} else {
// we're good, everything has the same type so far
}
}
return type;
}
/**
* Return the last item from an array
* @param {array}
* @returns {*}
*/
function last(array) {
return array[array.length - 1];
}
/**
* Get all but the last element of array.
* @param {array}
* @returns {*}
*/
function initial(array) {
return array.slice(0, array.length - 1);
}
/**
* Recursively concatenate two matrices.
* The contents of the matrices is not cloned.
* @param {Array} a Multi dimensional array
* @param {Array} b Multi dimensional array
* @param {number} concatDim The dimension on which to concatenate (zero-based)
* @param {number} dim The current dim (zero-based)
* @return {Array} c The concatenated matrix
* @private
*/
function concatRecursive(a, b, concatDim, dim) {
if (dim < concatDim) {
// recurse into next dimension
if (a.length !== b.length) {
throw new _DimensionError.DimensionError(a.length, b.length);
}
const c = [];
for (let i = 0; i < a.length; i++) {
c[i] = concatRecursive(a[i], b[i], concatDim, dim + 1);
}
return c;
} else {
// concatenate this dimension
return a.concat(b);
}
}
/**
* Concatenates many arrays in the specified direction
* @param {...Array} arrays All the arrays to concatenate
* @param {number} concatDim The dimension on which to concatenate (zero-based)
* @returns
*/
function concat() {
const arrays = Array.prototype.slice.call(arguments, 0, -1);
const concatDim = Array.prototype.slice.call(arguments, -1);
if (arrays.length === 1) {
return arrays[0];
}
if (arrays.length > 1) {
return arrays.slice(1).reduce(function (A, B) {
return concatRecursive(A, B, concatDim, 0);
}, arrays[0]);
} else {
throw new Error('Wrong number of arguments in function concat');
}
}
/**
* Receives two or more sizes and get's the broadcasted size for both.
* @param {...number[]} sizes Sizes to broadcast together
* @returns
*/
function broadcastSizes() {
for (var _len = arguments.length, sizes = new Array(_len), _key = 0; _key < _len; _key++) {
sizes[_key] = arguments[_key];
}
const dimensions = sizes.map(s => s.length);
const N = Math.max(...dimensions);
const sizeMax = new Array(N).fill(null);
// check for every size
for (let i = 0; i < sizes.length; i++) {
const size = sizes[i];
const dim = dimensions[i];
for (let j = 0; j < dim; j++) {
const n = N - dim + j;
if (size[j] > sizeMax[n]) {
sizeMax[n] = size[j];
}
}
}
for (let i = 0; i < sizes.length; i++) {
checkBroadcastingRules(sizes[i], sizeMax);
}
return sizeMax;
}
/**
* Checks if it's possible to broadcast a size to another size
* @param {number[]} size The size of the array to check
* @param {number[]} toSize The size of the array to validate if it can be broadcasted to
*/
function checkBroadcastingRules(size, toSize) {
const N = toSize.length;
const dim = size.length;
for (let j = 0; j < dim; j++) {
const n = N - dim + j;
if (size[j] < toSize[n] && size[j] > 1 || size[j] > toSize[n]) {
throw new Error(`shape missmatch: missmatch is found in arg with shape (${size}) not possible to broadcast dimension ${dim} with size ${size[j]} to size ${toSize[n]}`);
}
}
}
/**
* Broadcasts a single array to a certain size
* @param {array} array Array to be broadcasted
* @param {number[]} toSize Size to broadcast the array
* @returns The broadcasted array
*/
function broadcastTo(array, toSize) {
let Asize = arraySize(array);
if ((0, _object.deepStrictEqual)(Asize, toSize)) {
return array;
}
checkBroadcastingRules(Asize, toSize);
const broadcastedSize = broadcastSizes(Asize, toSize);
const N = broadcastedSize.length;
const paddedSize = [...Array(N - Asize.length).fill(1), ...Asize];
let A = clone(array);
// reshape A if needed to make it ready for concat
if (Asize.length < N) {
A = reshape(A, paddedSize);
Asize = arraySize(A);
}
// stretches the array on each dimension to make it the same size as index
for (let dim = 0; dim < N; dim++) {
if (Asize[dim] < broadcastedSize[dim]) {
A = stretch(A, broadcastedSize[dim], dim);
Asize = arraySize(A);
}
}
return A;
}
/**
* Broadcasts arrays and returns the broadcasted arrays in an array
* @param {...Array | any} arrays
* @returns
*/
function broadcastArrays() {
for (var _len2 = arguments.length, arrays = new Array(_len2), _key2 = 0; _key2 < _len2; _key2++) {
arrays[_key2] = arguments[_key2];
}
if (arrays.length === 0) {
throw new Error('Insuficient number of argumnets in function broadcastArrays');
}
if (arrays.length === 1) {
return arrays[0];
}
const sizes = arrays.map(function (array) {
return arraySize(array);
});
const broadcastedSize = broadcastSizes(...sizes);
const broadcastedArrays = [];
arrays.forEach(function (array) {
broadcastedArrays.push(broadcastTo(array, broadcastedSize));
});
return broadcastedArrays;
}
/**
* stretches a matrix up to a certain size in a certain dimension
* @param {Array} arrayToStretch
* @param {number[]} sizeToStretch
* @param {number} dimToStretch
* @returns
*/
function stretch(arrayToStretch, sizeToStretch, dimToStretch) {
return concat(...Array(sizeToStretch).fill(arrayToStretch), dimToStretch);
}
/**
* Retrieves a single element from an array given an index.
*
* @param {Array} array - The array from which to retrieve the value.
* @param {Array<number>} idx - An array of indices specifying the position of the desired element in each dimension.
* @returns {*} - The value at the specified position in the array.
*
* @example
* const arr = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]];
* const index = [1, 0, 1];
* console.log(getValue(arr, index)); // 6
*/
function get(array, index) {
if (!Array.isArray(array)) {
throw new Error('Array expected');
}
const size = arraySize(array);
if (index.length !== size.length) {
throw new _DimensionError.DimensionError(index.length, size.length);
}
for (let x = 0; x < index.length; x++) {
validateIndex(index[x], size[x]);
}
return index.reduce((acc, curr) => acc[curr], array);
}
/**
* Recursive function to map a multi-dimensional array.
*
* @param {*} value - The current value being processed in the array.
* @param {Array} index - The index of the current value being processed in the array.
* @param {Array} array - The array being processed.
* @param {Function} callback - Function that produces the element of the new Array, taking three arguments: the value of the element, the index of the element, and the Array being processed.
* @returns {*} The new array with each element being the result of the callback function.
*/
function recurse(value, index, array, callback) {
if (Array.isArray(value)) {
return value.map(function (child, i) {
// we create a copy of the index array and append the new index value
return recurse(child, index.concat(i), array, callback);
});
} else {
// invoke the callback function with the right number of arguments
return callback(value, index, array);
}
}
/**
* Deep clones a multidimensional array
* @param {Array} array
* @returns cloned array
*/
function clone(array) {
return (0, _extends2.default)([], array);
}