jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/cjs/function/arithmetic/multiply.js
2025-01-02 11:13:50 +08:00

886 lines
25 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createMultiply = void 0;
var _factory = require("../../utils/factory.js");
var _is = require("../../utils/is.js");
var _array = require("../../utils/array.js");
var _matAlgo11xS0s = require("../../type/matrix/utils/matAlgo11xS0s.js");
var _matAlgo14xDs = require("../../type/matrix/utils/matAlgo14xDs.js");
const name = 'multiply';
const dependencies = ['typed', 'matrix', 'addScalar', 'multiplyScalar', 'equalScalar', 'dot'];
const createMultiply = exports.createMultiply = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed,
matrix,
addScalar,
multiplyScalar,
equalScalar,
dot
} = _ref;
const matAlgo11xS0s = (0, _matAlgo11xS0s.createMatAlgo11xS0s)({
typed,
equalScalar
});
const matAlgo14xDs = (0, _matAlgo14xDs.createMatAlgo14xDs)({
typed
});
function _validateMatrixDimensions(size1, size2) {
// check left operand dimensions
switch (size1.length) {
case 1:
// check size2
switch (size2.length) {
case 1:
// Vector x Vector
if (size1[0] !== size2[0]) {
// throw error
throw new RangeError('Dimension mismatch in multiplication. Vectors must have the same length');
}
break;
case 2:
// Vector x Matrix
if (size1[0] !== size2[0]) {
// throw error
throw new RangeError('Dimension mismatch in multiplication. Vector length (' + size1[0] + ') must match Matrix rows (' + size2[0] + ')');
}
break;
default:
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)');
}
break;
case 2:
// check size2
switch (size2.length) {
case 1:
// Matrix x Vector
if (size1[1] !== size2[0]) {
// throw error
throw new RangeError('Dimension mismatch in multiplication. Matrix columns (' + size1[1] + ') must match Vector length (' + size2[0] + ')');
}
break;
case 2:
// Matrix x Matrix
if (size1[1] !== size2[0]) {
// throw error
throw new RangeError('Dimension mismatch in multiplication. Matrix A columns (' + size1[1] + ') must match Matrix B rows (' + size2[0] + ')');
}
break;
default:
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix B has ' + size2.length + ' dimensions)');
}
break;
default:
throw new Error('Can only multiply a 1 or 2 dimensional matrix (Matrix A has ' + size1.length + ' dimensions)');
}
}
/**
* C = A * B
*
* @param {Matrix} a Dense Vector (N)
* @param {Matrix} b Dense Vector (N)
*
* @return {number} Scalar value
*/
function _multiplyVectorVector(a, b, n) {
// check empty vector
if (n === 0) {
throw new Error('Cannot multiply two empty vectors');
}
return dot(a, b);
}
/**
* C = A * B
*
* @param {Matrix} a Dense Vector (M)
* @param {Matrix} b Matrix (MxN)
*
* @return {Matrix} Dense Vector (N)
*/
function _multiplyVectorMatrix(a, b) {
// process storage
if (b.storage() !== 'dense') {
throw new Error('Support for SparseMatrix not implemented');
}
return _multiplyVectorDenseMatrix(a, b);
}
/**
* C = A * B
*
* @param {Matrix} a Dense Vector (M)
* @param {Matrix} b Dense Matrix (MxN)
*
* @return {Matrix} Dense Vector (N)
*/
function _multiplyVectorDenseMatrix(a, b) {
// a dense
const adata = a._data;
const asize = a._size;
const adt = a._datatype || a.getDataType();
// b dense
const bdata = b._data;
const bsize = b._size;
const bdt = b._datatype || b.getDataType();
// rows & columns
const alength = asize[0];
const bcolumns = bsize[1];
// datatype
let dt;
// addScalar signature to use
let af = addScalar;
// multiplyScalar signature to use
let mf = multiplyScalar;
// process data types
if (adt && bdt && adt === bdt && typeof adt === 'string' && adt !== 'mixed') {
// datatype
dt = adt;
// find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt]);
mf = typed.find(multiplyScalar, [dt, dt]);
}
// result
const c = [];
// loop matrix columns
for (let j = 0; j < bcolumns; j++) {
// sum (do not initialize it with zero)
let sum = mf(adata[0], bdata[0][j]);
// loop vector
for (let i = 1; i < alength; i++) {
// multiply & accumulate
sum = af(sum, mf(adata[i], bdata[i][j]));
}
c[j] = sum;
}
// return matrix
return a.createDenseMatrix({
data: c,
size: [bcolumns],
datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined
});
}
/**
* C = A * B
*
* @param {Matrix} a Matrix (MxN)
* @param {Matrix} b Dense Vector (N)
*
* @return {Matrix} Dense Vector (M)
*/
const _multiplyMatrixVector = typed('_multiplyMatrixVector', {
'DenseMatrix, any': _multiplyDenseMatrixVector,
'SparseMatrix, any': _multiplySparseMatrixVector
});
/**
* C = A * B
*
* @param {Matrix} a Matrix (MxN)
* @param {Matrix} b Matrix (NxC)
*
* @return {Matrix} Matrix (MxC)
*/
const _multiplyMatrixMatrix = typed('_multiplyMatrixMatrix', {
'DenseMatrix, DenseMatrix': _multiplyDenseMatrixDenseMatrix,
'DenseMatrix, SparseMatrix': _multiplyDenseMatrixSparseMatrix,
'SparseMatrix, DenseMatrix': _multiplySparseMatrixDenseMatrix,
'SparseMatrix, SparseMatrix': _multiplySparseMatrixSparseMatrix
});
/**
* C = A * B
*
* @param {Matrix} a DenseMatrix (MxN)
* @param {Matrix} b Dense Vector (N)
*
* @return {Matrix} Dense Vector (M)
*/
function _multiplyDenseMatrixVector(a, b) {
// a dense
const adata = a._data;
const asize = a._size;
const adt = a._datatype || a.getDataType();
// b dense
const bdata = b._data;
const bdt = b._datatype || b.getDataType();
// rows & columns
const arows = asize[0];
const acolumns = asize[1];
// datatype
let dt;
// addScalar signature to use
let af = addScalar;
// multiplyScalar signature to use
let mf = multiplyScalar;
// process data types
if (adt && bdt && adt === bdt && typeof adt === 'string' && adt !== 'mixed') {
// datatype
dt = adt;
// find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt]);
mf = typed.find(multiplyScalar, [dt, dt]);
}
// result
const c = [];
// loop matrix a rows
for (let i = 0; i < arows; i++) {
// current row
const row = adata[i];
// sum (do not initialize it with zero)
let sum = mf(row[0], bdata[0]);
// loop matrix a columns
for (let j = 1; j < acolumns; j++) {
// multiply & accumulate
sum = af(sum, mf(row[j], bdata[j]));
}
c[i] = sum;
}
// return matrix
return a.createDenseMatrix({
data: c,
size: [arows],
datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined
});
}
/**
* C = A * B
*
* @param {Matrix} a DenseMatrix (MxN)
* @param {Matrix} b DenseMatrix (NxC)
*
* @return {Matrix} DenseMatrix (MxC)
*/
function _multiplyDenseMatrixDenseMatrix(a, b) {
// getDataType()
// a dense
const adata = a._data;
const asize = a._size;
const adt = a._datatype || a.getDataType();
// b dense
const bdata = b._data;
const bsize = b._size;
const bdt = b._datatype || b.getDataType();
// rows & columns
const arows = asize[0];
const acolumns = asize[1];
const bcolumns = bsize[1];
// datatype
let dt;
// addScalar signature to use
let af = addScalar;
// multiplyScalar signature to use
let mf = multiplyScalar;
// process data types
if (adt && bdt && adt === bdt && typeof adt === 'string' && adt !== 'mixed' && adt !== 'mixed') {
// datatype
dt = adt;
// find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt]);
mf = typed.find(multiplyScalar, [dt, dt]);
}
// result
const c = [];
// loop matrix a rows
for (let i = 0; i < arows; i++) {
// current row
const row = adata[i];
// initialize row array
c[i] = [];
// loop matrix b columns
for (let j = 0; j < bcolumns; j++) {
// sum (avoid initializing sum to zero)
let sum = mf(row[0], bdata[0][j]);
// loop matrix a columns
for (let x = 1; x < acolumns; x++) {
// multiply & accumulate
sum = af(sum, mf(row[x], bdata[x][j]));
}
c[i][j] = sum;
}
}
// return matrix
return a.createDenseMatrix({
data: c,
size: [arows, bcolumns],
datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined
});
}
/**
* C = A * B
*
* @param {Matrix} a DenseMatrix (MxN)
* @param {Matrix} b SparseMatrix (NxC)
*
* @return {Matrix} SparseMatrix (MxC)
*/
function _multiplyDenseMatrixSparseMatrix(a, b) {
// a dense
const adata = a._data;
const asize = a._size;
const adt = a._datatype || a.getDataType();
// b sparse
const bvalues = b._values;
const bindex = b._index;
const bptr = b._ptr;
const bsize = b._size;
const bdt = b._datatype || b._data === undefined ? b._datatype : b.getDataType();
// validate b matrix
if (!bvalues) {
throw new Error('Cannot multiply Dense Matrix times Pattern only Matrix');
}
// rows & columns
const arows = asize[0];
const bcolumns = bsize[1];
// datatype
let dt;
// addScalar signature to use
let af = addScalar;
// multiplyScalar signature to use
let mf = multiplyScalar;
// equalScalar signature to use
let eq = equalScalar;
// zero value
let zero = 0;
// process data types
if (adt && bdt && adt === bdt && typeof adt === 'string' && adt !== 'mixed') {
// datatype
dt = adt;
// find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt]);
mf = typed.find(multiplyScalar, [dt, dt]);
eq = typed.find(equalScalar, [dt, dt]);
// convert 0 to the same datatype
zero = typed.convert(0, dt);
}
// result
const cvalues = [];
const cindex = [];
const cptr = [];
// c matrix
const c = b.createSparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [arows, bcolumns],
datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined
});
// loop b columns
for (let jb = 0; jb < bcolumns; jb++) {
// update ptr
cptr[jb] = cindex.length;
// indeces in column jb
const kb0 = bptr[jb];
const kb1 = bptr[jb + 1];
// do not process column jb if no data exists
if (kb1 > kb0) {
// last row mark processed
let last = 0;
// loop a rows
for (let i = 0; i < arows; i++) {
// column mark
const mark = i + 1;
// C[i, jb]
let cij;
// values in b column j
for (let kb = kb0; kb < kb1; kb++) {
// row
const ib = bindex[kb];
// check value has been initialized
if (last !== mark) {
// first value in column jb
cij = mf(adata[i][ib], bvalues[kb]);
// update mark
last = mark;
} else {
// accumulate value
cij = af(cij, mf(adata[i][ib], bvalues[kb]));
}
}
// check column has been processed and value != 0
if (last === mark && !eq(cij, zero)) {
// push row & value
cindex.push(i);
cvalues.push(cij);
}
}
}
}
// update ptr
cptr[bcolumns] = cindex.length;
// return sparse matrix
return c;
}
/**
* C = A * B
*
* @param {Matrix} a SparseMatrix (MxN)
* @param {Matrix} b Dense Vector (N)
*
* @return {Matrix} SparseMatrix (M, 1)
*/
function _multiplySparseMatrixVector(a, b) {
// a sparse
const avalues = a._values;
const aindex = a._index;
const aptr = a._ptr;
const adt = a._datatype || a._data === undefined ? a._datatype : a.getDataType();
// validate a matrix
if (!avalues) {
throw new Error('Cannot multiply Pattern only Matrix times Dense Matrix');
}
// b dense
const bdata = b._data;
const bdt = b._datatype || b.getDataType();
// rows & columns
const arows = a._size[0];
const brows = b._size[0];
// result
const cvalues = [];
const cindex = [];
const cptr = [];
// datatype
let dt;
// addScalar signature to use
let af = addScalar;
// multiplyScalar signature to use
let mf = multiplyScalar;
// equalScalar signature to use
let eq = equalScalar;
// zero value
let zero = 0;
// process data types
if (adt && bdt && adt === bdt && typeof adt === 'string' && adt !== 'mixed') {
// datatype
dt = adt;
// find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt]);
mf = typed.find(multiplyScalar, [dt, dt]);
eq = typed.find(equalScalar, [dt, dt]);
// convert 0 to the same datatype
zero = typed.convert(0, dt);
}
// workspace
const x = [];
// vector with marks indicating a value x[i] exists in a given column
const w = [];
// update ptr
cptr[0] = 0;
// rows in b
for (let ib = 0; ib < brows; ib++) {
// b[ib]
const vbi = bdata[ib];
// check b[ib] != 0, avoid loops
if (!eq(vbi, zero)) {
// A values & index in ib column
for (let ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
// a row
const ia = aindex[ka];
// check value exists in current j
if (!w[ia]) {
// ia is new entry in j
w[ia] = true;
// add i to pattern of C
cindex.push(ia);
// x(ia) = A
x[ia] = mf(vbi, avalues[ka]);
} else {
// i exists in C already
x[ia] = af(x[ia], mf(vbi, avalues[ka]));
}
}
}
}
// copy values from x to column jb of c
for (let p1 = cindex.length, p = 0; p < p1; p++) {
// row
const ic = cindex[p];
// copy value
cvalues[p] = x[ic];
}
// update ptr
cptr[1] = cindex.length;
// matrix to return
return a.createSparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [arows, 1],
datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined
});
}
/**
* C = A * B
*
* @param {Matrix} a SparseMatrix (MxN)
* @param {Matrix} b DenseMatrix (NxC)
*
* @return {Matrix} SparseMatrix (MxC)
*/
function _multiplySparseMatrixDenseMatrix(a, b) {
// a sparse
const avalues = a._values;
const aindex = a._index;
const aptr = a._ptr;
const adt = a._datatype || a._data === undefined ? a._datatype : a.getDataType();
// validate a matrix
if (!avalues) {
throw new Error('Cannot multiply Pattern only Matrix times Dense Matrix');
}
// b dense
const bdata = b._data;
const bdt = b._datatype || b.getDataType();
// rows & columns
const arows = a._size[0];
const brows = b._size[0];
const bcolumns = b._size[1];
// datatype
let dt;
// addScalar signature to use
let af = addScalar;
// multiplyScalar signature to use
let mf = multiplyScalar;
// equalScalar signature to use
let eq = equalScalar;
// zero value
let zero = 0;
// process data types
if (adt && bdt && adt === bdt && typeof adt === 'string' && adt !== 'mixed') {
// datatype
dt = adt;
// find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt]);
mf = typed.find(multiplyScalar, [dt, dt]);
eq = typed.find(equalScalar, [dt, dt]);
// convert 0 to the same datatype
zero = typed.convert(0, dt);
}
// result
const cvalues = [];
const cindex = [];
const cptr = [];
// c matrix
const c = a.createSparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [arows, bcolumns],
datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined
});
// workspace
const x = [];
// vector with marks indicating a value x[i] exists in a given column
const w = [];
// loop b columns
for (let jb = 0; jb < bcolumns; jb++) {
// update ptr
cptr[jb] = cindex.length;
// mark in workspace for current column
const mark = jb + 1;
// rows in jb
for (let ib = 0; ib < brows; ib++) {
// b[ib, jb]
const vbij = bdata[ib][jb];
// check b[ib, jb] != 0, avoid loops
if (!eq(vbij, zero)) {
// A values & index in ib column
for (let ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
// a row
const ia = aindex[ka];
// check value exists in current j
if (w[ia] !== mark) {
// ia is new entry in j
w[ia] = mark;
// add i to pattern of C
cindex.push(ia);
// x(ia) = A
x[ia] = mf(vbij, avalues[ka]);
} else {
// i exists in C already
x[ia] = af(x[ia], mf(vbij, avalues[ka]));
}
}
}
}
// copy values from x to column jb of c
for (let p0 = cptr[jb], p1 = cindex.length, p = p0; p < p1; p++) {
// row
const ic = cindex[p];
// copy value
cvalues[p] = x[ic];
}
}
// update ptr
cptr[bcolumns] = cindex.length;
// return sparse matrix
return c;
}
/**
* C = A * B
*
* @param {Matrix} a SparseMatrix (MxN)
* @param {Matrix} b SparseMatrix (NxC)
*
* @return {Matrix} SparseMatrix (MxC)
*/
function _multiplySparseMatrixSparseMatrix(a, b) {
// a sparse
const avalues = a._values;
const aindex = a._index;
const aptr = a._ptr;
const adt = a._datatype || a._data === undefined ? a._datatype : a.getDataType();
// b sparse
const bvalues = b._values;
const bindex = b._index;
const bptr = b._ptr;
const bdt = b._datatype || b._data === undefined ? b._datatype : b.getDataType();
// rows & columns
const arows = a._size[0];
const bcolumns = b._size[1];
// flag indicating both matrices (a & b) contain data
const values = avalues && bvalues;
// datatype
let dt;
// addScalar signature to use
let af = addScalar;
// multiplyScalar signature to use
let mf = multiplyScalar;
// process data types
if (adt && bdt && adt === bdt && typeof adt === 'string' && adt !== 'mixed') {
// datatype
dt = adt;
// find signatures that matches (dt, dt)
af = typed.find(addScalar, [dt, dt]);
mf = typed.find(multiplyScalar, [dt, dt]);
}
// result
const cvalues = values ? [] : undefined;
const cindex = [];
const cptr = [];
// c matrix
const c = a.createSparseMatrix({
values: cvalues,
index: cindex,
ptr: cptr,
size: [arows, bcolumns],
datatype: adt === a._datatype && bdt === b._datatype ? dt : undefined
});
// workspace
const x = values ? [] : undefined;
// vector with marks indicating a value x[i] exists in a given column
const w = [];
// variables
let ka, ka0, ka1, kb, kb0, kb1, ia, ib;
// loop b columns
for (let jb = 0; jb < bcolumns; jb++) {
// update ptr
cptr[jb] = cindex.length;
// mark in workspace for current column
const mark = jb + 1;
// B values & index in j
for (kb0 = bptr[jb], kb1 = bptr[jb + 1], kb = kb0; kb < kb1; kb++) {
// b row
ib = bindex[kb];
// check we need to process values
if (values) {
// loop values in a[:,ib]
for (ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
// row
ia = aindex[ka];
// check value exists in current j
if (w[ia] !== mark) {
// ia is new entry in j
w[ia] = mark;
// add i to pattern of C
cindex.push(ia);
// x(ia) = A
x[ia] = mf(bvalues[kb], avalues[ka]);
} else {
// i exists in C already
x[ia] = af(x[ia], mf(bvalues[kb], avalues[ka]));
}
}
} else {
// loop values in a[:,ib]
for (ka0 = aptr[ib], ka1 = aptr[ib + 1], ka = ka0; ka < ka1; ka++) {
// row
ia = aindex[ka];
// check value exists in current j
if (w[ia] !== mark) {
// ia is new entry in j
w[ia] = mark;
// add i to pattern of C
cindex.push(ia);
}
}
}
}
// check we need to process matrix values (pattern matrix)
if (values) {
// copy values from x to column jb of c
for (let p0 = cptr[jb], p1 = cindex.length, p = p0; p < p1; p++) {
// row
const ic = cindex[p];
// copy value
cvalues[p] = x[ic];
}
}
}
// update ptr
cptr[bcolumns] = cindex.length;
// return sparse matrix
return c;
}
/**
* Multiply two or more values, `x * y`.
* For matrices, the matrix product is calculated.
*
* Syntax:
*
* math.multiply(x, y)
* math.multiply(x, y, z, ...)
*
* Examples:
*
* math.multiply(4, 5.2) // returns number 20.8
* math.multiply(2, 3, 4) // returns number 24
*
* const a = math.complex(2, 3)
* const b = math.complex(4, 1)
* math.multiply(a, b) // returns Complex 5 + 14i
*
* const c = [[1, 2], [4, 3]]
* const d = [[1, 2, 3], [3, -4, 7]]
* math.multiply(c, d) // returns Array [[7, -6, 17], [13, -4, 33]]
*
* const e = math.unit('2.1 km')
* math.multiply(3, e) // returns Unit 6.3 km
*
* See also:
*
* divide, prod, cross, dot
*
* @param {number | BigNumber | bigint | Fraction | Complex | Unit | Array | Matrix} x First value to multiply
* @param {number | BigNumber | bigint | Fraction | Complex | Unit | Array | Matrix} y Second value to multiply
* @return {number | BigNumber | bigint | Fraction | Complex | Unit | Array | Matrix} Multiplication of `x` and `y`
*/
return typed(name, multiplyScalar, {
// we extend the signatures of multiplyScalar with signatures dealing with matrices
'Array, Array': typed.referTo('Matrix, Matrix', selfMM => (x, y) => {
// check dimensions
_validateMatrixDimensions((0, _array.arraySize)(x), (0, _array.arraySize)(y));
// use dense matrix implementation
const m = selfMM(matrix(x), matrix(y));
// return array or scalar
return (0, _is.isMatrix)(m) ? m.valueOf() : m;
}),
'Matrix, Matrix': function (x, y) {
// dimensions
const xsize = x.size();
const ysize = y.size();
// check dimensions
_validateMatrixDimensions(xsize, ysize);
// process dimensions
if (xsize.length === 1) {
// process y dimensions
if (ysize.length === 1) {
// Vector * Vector
return _multiplyVectorVector(x, y, xsize[0]);
}
// Vector * Matrix
return _multiplyVectorMatrix(x, y);
}
// process y dimensions
if (ysize.length === 1) {
// Matrix * Vector
return _multiplyMatrixVector(x, y);
}
// Matrix * Matrix
return _multiplyMatrixMatrix(x, y);
},
'Matrix, Array': typed.referTo('Matrix,Matrix', selfMM => (x, y) => selfMM(x, matrix(y))),
'Array, Matrix': typed.referToSelf(self => (x, y) => {
// use Matrix * Matrix implementation
return self(matrix(x, y.storage()), y);
}),
'SparseMatrix, any': function (x, y) {
return matAlgo11xS0s(x, y, multiplyScalar, false);
},
'DenseMatrix, any': function (x, y) {
return matAlgo14xDs(x, y, multiplyScalar, false);
},
'any, SparseMatrix': function (x, y) {
return matAlgo11xS0s(y, x, multiplyScalar, true);
},
'any, DenseMatrix': function (x, y) {
return matAlgo14xDs(y, x, multiplyScalar, true);
},
'Array, any': function (x, y) {
// use matrix implementation
return matAlgo14xDs(matrix(x), y, multiplyScalar, false).valueOf();
},
'any, Array': function (x, y) {
// use matrix implementation
return matAlgo14xDs(matrix(y), x, multiplyScalar, true).valueOf();
},
'any, any': multiplyScalar,
'any, any, ...any': typed.referToSelf(self => (x, y, rest) => {
let result = self(x, y);
for (let i = 0; i < rest.length; i++) {
result = self(result, rest[i]);
}
return result;
})
});
});