import { factory } from '../../utils/factory.js'; import { deepMap } from '../../utils/collection.js'; import { nearlyEqual, splitNumber } from '../../utils/number.js'; import { nearlyEqual as bigNearlyEqual } from '../../utils/bignumber/nearlyEqual.js'; import { createMatAlgo11xS0s } from '../../type/matrix/utils/matAlgo11xS0s.js'; import { createMatAlgo12xSfs } from '../../type/matrix/utils/matAlgo12xSfs.js'; import { createMatAlgo14xDs } from '../../type/matrix/utils/matAlgo14xDs.js'; import { roundNumber } from '../../plain/number/index.js'; var NO_INT = 'Number of decimals in function round must be an integer'; var name = 'round'; var dependencies = ['typed', 'config', 'matrix', 'equalScalar', 'zeros', 'BigNumber', 'DenseMatrix']; export var createRound = /* #__PURE__ */factory(name, dependencies, _ref => { var { typed, config, matrix, equalScalar, zeros, BigNumber: _BigNumber, DenseMatrix } = _ref; var matAlgo11xS0s = createMatAlgo11xS0s({ typed, equalScalar }); var matAlgo12xSfs = createMatAlgo12xSfs({ typed, DenseMatrix }); var matAlgo14xDs = createMatAlgo14xDs({ typed }); function toExponent(epsilon) { return Math.abs(splitNumber(epsilon).exponent); } /** * Round a value towards the nearest rounded value. * For matrices, the function is evaluated element wise. * * Syntax: * * math.round(x) * math.round(x, n) * math.round(unit, valuelessUnit) * math.round(unit, n, valuelessUnit) * * Examples: * * math.round(3.22) // returns number 3 * math.round(3.82) // returns number 4 * math.round(-4.2) // returns number -4 * math.round(-4.7) // returns number -5 * math.round(3.22, 1) // returns number 3.2 * math.round(3.88, 1) // returns number 3.9 * math.round(-4.21, 1) // returns number -4.2 * math.round(-4.71, 1) // returns number -4.7 * math.round(math.pi, 3) // returns number 3.142 * math.round(123.45678, 2) // returns number 123.46 * * const c = math.complex(3.2, -2.7) * math.round(c) // returns Complex 3 - 3i * * const unit = math.unit('3.241 cm') * const cm = math.unit('cm') * const mm = math.unit('mm') * math.round(unit, 1, cm) // returns Unit 3.2 cm * math.round(unit, 1, mm) // returns Unit 32.4 mm * * math.round([3.2, 3.8, -4.7]) // returns Array [3, 4, -5] * * See also: * * ceil, fix, floor * * @param {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} x Value to be rounded * @param {number | BigNumber | Array} [n=0] Number of decimals * @param {Unit} [valuelessUnit] A valueless unit * @return {number | BigNumber | Fraction | Complex | Unit | Array | Matrix} Rounded value */ return typed(name, { number: function number(x) { // Handle round off errors by first rounding to relTol precision var xEpsilon = roundNumber(x, toExponent(config.relTol)); var xSelected = nearlyEqual(x, xEpsilon, config.relTol, config.absTol) ? xEpsilon : x; return roundNumber(xSelected); }, 'number, number': function number_number(x, n) { // Same as number: unless user specifies more decimals than relTol var epsilonExponent = toExponent(config.relTol); if (n >= epsilonExponent) { return roundNumber(x, n); } var xEpsilon = roundNumber(x, epsilonExponent); var xSelected = nearlyEqual(x, xEpsilon, config.relTol, config.absTol) ? xEpsilon : x; return roundNumber(xSelected, n); }, 'number, BigNumber': function number_BigNumber(x, n) { if (!n.isInteger()) { throw new TypeError(NO_INT); } return new _BigNumber(x).toDecimalPlaces(n.toNumber()); }, Complex: function Complex(x) { return x.round(); }, 'Complex, number': function Complex_number(x, n) { if (n % 1) { throw new TypeError(NO_INT); } return x.round(n); }, 'Complex, BigNumber': function Complex_BigNumber(x, n) { if (!n.isInteger()) { throw new TypeError(NO_INT); } var _n = n.toNumber(); return x.round(_n); }, BigNumber: function BigNumber(x) { // Handle round off errors by first rounding to relTol precision var xEpsilon = new _BigNumber(x).toDecimalPlaces(toExponent(config.relTol)); var xSelected = bigNearlyEqual(x, xEpsilon, config.relTol, config.absTol) ? xEpsilon : x; return xSelected.toDecimalPlaces(0); }, 'BigNumber, BigNumber': function BigNumber_BigNumber(x, n) { if (!n.isInteger()) { throw new TypeError(NO_INT); } // Same as BigNumber: unless user specifies more decimals than relTol var epsilonExponent = toExponent(config.relTol); if (n >= epsilonExponent) { return x.toDecimalPlaces(n.toNumber()); } var xEpsilon = x.toDecimalPlaces(epsilonExponent); var xSelected = bigNearlyEqual(x, xEpsilon, config.relTol, config.absTol) ? xEpsilon : x; return xSelected.toDecimalPlaces(n.toNumber()); }, Fraction: function Fraction(x) { return x.round(); }, 'Fraction, number': function Fraction_number(x, n) { if (n % 1) { throw new TypeError(NO_INT); } return x.round(n); }, 'Fraction, BigNumber': function Fraction_BigNumber(x, n) { if (!n.isInteger()) { throw new TypeError(NO_INT); } return x.round(n.toNumber()); }, 'Unit, number, Unit': typed.referToSelf(self => function (x, n, unit) { var valueless = x.toNumeric(unit); return unit.multiply(self(valueless, n)); }), 'Unit, BigNumber, Unit': typed.referToSelf(self => (x, n, unit) => self(x, n.toNumber(), unit)), 'Array | Matrix, number | BigNumber, Unit': typed.referToSelf(self => (x, n, unit) => { // deep map collection, skip zeros since round(0) = 0 return deepMap(x, value => self(value, n, unit), true); }), 'Array | Matrix | Unit, Unit': typed.referToSelf(self => (x, unit) => self(x, 0, unit)), 'Array | Matrix': typed.referToSelf(self => x => { // deep map collection, skip zeros since round(0) = 0 return deepMap(x, self, true); }), 'SparseMatrix, number | BigNumber': typed.referToSelf(self => (x, n) => { return matAlgo11xS0s(x, n, self, false); }), 'DenseMatrix, number | BigNumber': typed.referToSelf(self => (x, n) => { return matAlgo14xDs(x, n, self, false); }), 'Array, number | BigNumber': typed.referToSelf(self => (x, n) => { // use matrix implementation return matAlgo14xDs(matrix(x), n, self, false).valueOf(); }), 'number | Complex | BigNumber | Fraction, SparseMatrix': typed.referToSelf(self => (x, n) => { // check scalar is zero if (equalScalar(x, 0)) { // do not execute algorithm, result will be a zero matrix return zeros(n.size(), n.storage()); } return matAlgo12xSfs(n, x, self, true); }), 'number | Complex | BigNumber | Fraction, DenseMatrix': typed.referToSelf(self => (x, n) => { // check scalar is zero if (equalScalar(x, 0)) { // do not execute algorithm, result will be a zero matrix return zeros(n.size(), n.storage()); } return matAlgo14xDs(n, x, self, true); }), 'number | Complex | BigNumber | Fraction, Array': typed.referToSelf(self => (x, n) => { // use matrix implementation return matAlgo14xDs(matrix(n), x, self, true).valueOf(); }) }); });