"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createGamma = void 0; var _factory = require("../../utils/factory.js"); var _index = require("../../plain/number/index.js"); const name = 'gamma'; const dependencies = ['typed', 'config', 'multiplyScalar', 'pow', 'BigNumber', 'Complex']; const createGamma = exports.createGamma = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => { let { typed, config, multiplyScalar, pow, BigNumber, Complex } = _ref; /** * Compute the gamma function of a value using Lanczos approximation for * small values, and an extended Stirling approximation for large values. * * To avoid confusion with the matrix Gamma function, this function does * not apply to matrices. * * Syntax: * * math.gamma(n) * * Examples: * * math.gamma(5) // returns 24 * math.gamma(-0.5) // returns -3.5449077018110335 * math.gamma(math.i) // returns -0.15494982830180973 - 0.49801566811835596i * * See also: * * combinations, factorial, permutations * * @param {number | BigNumber | Complex} n A real or complex number * @return {number | BigNumber | Complex} The gamma of `n` */ function gammaComplex(n) { if (n.im === 0) { return (0, _index.gammaNumber)(n.re); } // Lanczos approximation doesn't work well with real part lower than 0.5 // So reflection formula is required if (n.re < 0.5) { // Euler's reflection formula // gamma(1-z) * gamma(z) = PI / sin(PI * z) // real part of Z should not be integer [sin(PI) == 0 -> 1/0 - undefined] // thanks to imperfect sin implementation sin(PI * n) != 0 // we can safely use it anyway const t = new Complex(1 - n.re, -n.im); const r = new Complex(Math.PI * n.re, Math.PI * n.im); return new Complex(Math.PI).div(r.sin()).div(gammaComplex(t)); } // Lanczos approximation // z -= 1 n = new Complex(n.re - 1, n.im); // x = gammaPval[0] let x = new Complex(_index.gammaP[0], 0); // for (i, gammaPval) in enumerate(gammaP): for (let i = 1; i < _index.gammaP.length; ++i) { // x += gammaPval / (z + i) const gammaPval = new Complex(_index.gammaP[i], 0); x = x.add(gammaPval.div(n.add(i))); } // t = z + gammaG + 0.5 const t = new Complex(n.re + _index.gammaG + 0.5, n.im); // y = sqrt(2 * pi) * t ** (z + 0.5) * exp(-t) * x const twoPiSqrt = Math.sqrt(2 * Math.PI); const tpow = t.pow(n.add(0.5)); const expt = t.neg().exp(); // y = [x] * [sqrt(2 * pi)] * [t ** (z + 0.5)] * [exp(-t)] return x.mul(twoPiSqrt).mul(tpow).mul(expt); } return typed(name, { number: _index.gammaNumber, Complex: gammaComplex, BigNumber: function (n) { if (n.isInteger()) { return n.isNegative() || n.isZero() ? new BigNumber(Infinity) : bigFactorial(n.minus(1)); } if (!n.isFinite()) { return new BigNumber(n.isNegative() ? NaN : Infinity); } throw new Error('Integer BigNumber expected'); } }); /** * Calculate factorial for a BigNumber * @param {BigNumber} n * @returns {BigNumber} Returns the factorial of n */ function bigFactorial(n) { if (n < 8) { return new BigNumber([1, 1, 2, 6, 24, 120, 720, 5040][n]); } const precision = config.precision + (Math.log(n.toNumber()) | 0); const Big = BigNumber.clone({ precision }); if (n % 2 === 1) { return n.times(bigFactorial(new BigNumber(n - 1))); } let p = n; let prod = new Big(n); let sum = n.toNumber(); while (p > 2) { p -= 2; sum += p; prod = prod.times(sum); } return new BigNumber(prod.toPrecision(BigNumber.precision)); } });