"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createTranspose = void 0; var _object = require("../../utils/object.js"); var _string = require("../../utils/string.js"); var _factory = require("../../utils/factory.js"); const name = 'transpose'; const dependencies = ['typed', 'matrix']; const createTranspose = exports.createTranspose = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => { let { typed, matrix } = _ref; /** * Transpose a matrix. All values of the matrix are reflected over its * main diagonal. Only applicable to two dimensional matrices containing * a vector (i.e. having size `[1,n]` or `[n,1]`). One dimensional * vectors and scalars return the input unchanged. * * Syntax: * * math.transpose(x) * * Examples: * * const A = [[1, 2, 3], [4, 5, 6]] * math.transpose(A) // returns [[1, 4], [2, 5], [3, 6]] * * See also: * * diag, inv, subset, squeeze * * @param {Array | Matrix} x Matrix to be transposed * @return {Array | Matrix} The transposed matrix */ return typed(name, { Array: x => transposeMatrix(matrix(x)).valueOf(), Matrix: transposeMatrix, any: _object.clone // scalars }); function transposeMatrix(x) { // matrix size const size = x.size(); // result let c; // process dimensions switch (size.length) { case 1: // vector c = x.clone(); break; case 2: { // rows and columns const rows = size[0]; const columns = size[1]; // check columns if (columns === 0) { // throw exception throw new RangeError('Cannot transpose a 2D matrix with no columns (size: ' + (0, _string.format)(size) + ')'); } // process storage format switch (x.storage()) { case 'dense': c = _denseTranspose(x, rows, columns); break; case 'sparse': c = _sparseTranspose(x, rows, columns); break; } } break; default: // multi dimensional throw new RangeError('Matrix must be a vector or two dimensional (size: ' + (0, _string.format)(size) + ')'); } return c; } function _denseTranspose(m, rows, columns) { // matrix array const data = m._data; // transposed matrix data const transposed = []; let transposedRow; // loop columns for (let j = 0; j < columns; j++) { // initialize row transposedRow = transposed[j] = []; // loop rows for (let i = 0; i < rows; i++) { // set data transposedRow[i] = (0, _object.clone)(data[i][j]); } } // return matrix return m.createDenseMatrix({ data: transposed, size: [columns, rows], datatype: m._datatype }); } function _sparseTranspose(m, rows, columns) { // matrix arrays const values = m._values; const index = m._index; const ptr = m._ptr; // result matrices const cvalues = values ? [] : undefined; const cindex = []; const cptr = []; // row counts const w = []; for (let x = 0; x < rows; x++) { w[x] = 0; } // vars let p, l, j; // loop values in matrix for (p = 0, l = index.length; p < l; p++) { // number of values in row w[index[p]]++; } // cumulative sum let sum = 0; // initialize cptr with the cummulative sum of row counts for (let i = 0; i < rows; i++) { // update cptr cptr.push(sum); // update sum sum += w[i]; // update w w[i] = cptr[i]; } // update cptr cptr.push(sum); // loop columns for (j = 0; j < columns; j++) { // values & index in column for (let k0 = ptr[j], k1 = ptr[j + 1], k = k0; k < k1; k++) { // C values & index const q = w[index[k]]++; // C[j, i] = A[i, j] cindex[q] = j; // check we need to process values (pattern matrix) if (values) { cvalues[q] = (0, _object.clone)(values[k]); } } } // return matrix return m.createSparseMatrix({ values: cvalues, index: cindex, ptr: cptr, size: [columns, rows], datatype: m._datatype }); } });