"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createCsSymperm = void 0; var _csCumsum = require("./csCumsum.js"); var _factory = require("../../../utils/factory.js"); // Copyright (c) 2006-2024, Timothy A. Davis, All Rights Reserved. // SPDX-License-Identifier: LGPL-2.1+ // https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/dev/CSparse/Source const name = 'csSymperm'; const dependencies = ['conj', 'SparseMatrix']; const createCsSymperm = exports.createCsSymperm = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => { let { conj, SparseMatrix } = _ref; /** * Computes the symmetric permutation of matrix A accessing only * the upper triangular part of A. * * C = P * A * P' * * @param {Matrix} a The A matrix * @param {Array} pinv The inverse of permutation vector * @param {boolean} values Process matrix values (true) * * @return {Matrix} The C matrix, C = P * A * P' */ return function csSymperm(a, pinv, values) { // A matrix arrays const avalues = a._values; const aindex = a._index; const aptr = a._ptr; const asize = a._size; // columns const n = asize[1]; // C matrix arrays const cvalues = values && avalues ? [] : null; const cindex = []; // (nz) const cptr = []; // (n + 1) // variables let i, i2, j, j2, p, p0, p1; // create workspace vector const w = []; // (n) // count entries in each column of C for (j = 0; j < n; j++) { // column j of A is column j2 of C j2 = pinv ? pinv[j] : j; // loop values in column j for (p0 = aptr[j], p1 = aptr[j + 1], p = p0; p < p1; p++) { // row i = aindex[p]; // skip lower triangular part of A if (i > j) { continue; } // row i of A is row i2 of C i2 = pinv ? pinv[i] : i; // column count of C w[Math.max(i2, j2)]++; } } // compute column pointers of C (0, _csCumsum.csCumsum)(cptr, w, n); // loop columns for (j = 0; j < n; j++) { // column j of A is column j2 of C j2 = pinv ? pinv[j] : j; // loop values in column j for (p0 = aptr[j], p1 = aptr[j + 1], p = p0; p < p1; p++) { // row i = aindex[p]; // skip lower triangular part of A if (i > j) { continue; } // row i of A is row i2 of C i2 = pinv ? pinv[i] : i; // C index for column j2 const q = w[Math.max(i2, j2)]++; // update C index for entry q cindex[q] = Math.min(i2, j2); // check we need to process values if (cvalues) { cvalues[q] = i2 <= j2 ? avalues[p] : conj(avalues[p]); } } } // return C matrix return new SparseMatrix({ values: cvalues, index: cindex, ptr: cptr, size: [n, n] }); }; });