"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createUsolve = void 0; var _factory = require("../../../utils/factory.js"); var _solveValidation = require("./utils/solveValidation.js"); const name = 'usolve'; const dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtractScalar', 'equalScalar', 'DenseMatrix']; const createUsolve = exports.createUsolve = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => { let { typed, matrix, divideScalar, multiplyScalar, subtractScalar, equalScalar, DenseMatrix } = _ref; const solveValidation = (0, _solveValidation.createSolveValidation)({ DenseMatrix }); /** * Finds one solution of a linear equation system by backward substitution. Matrix must be an upper triangular matrix. Throws an error if there's no solution. * * `U * x = b` * * Syntax: * * math.usolve(U, b) * * Examples: * * const a = [[-2, 3], [2, 1]] * const b = [11, 9] * const x = usolve(a, b) // [[8], [9]] * * See also: * * usolveAll, lup, slu, usolve, lusolve * * @param {Matrix, Array} U A N x N matrix or array (U) * @param {Matrix, Array} b A column vector with the b values * * @return {DenseMatrix | Array} A column vector with the linear system solution (x) */ return typed(name, { 'SparseMatrix, Array | Matrix': function (m, b) { return _sparseBackwardSubstitution(m, b); }, 'DenseMatrix, Array | Matrix': function (m, b) { return _denseBackwardSubstitution(m, b); }, 'Array, Array | Matrix': function (a, b) { const m = matrix(a); const r = _denseBackwardSubstitution(m, b); return r.valueOf(); } }); function _denseBackwardSubstitution(m, b) { // make b into a column vector b = solveValidation(m, b, true); const bdata = b._data; const rows = m._size[0]; const columns = m._size[1]; // result const x = []; const mdata = m._data; // loop columns backwards for (let j = columns - 1; j >= 0; j--) { // b[j] const bj = bdata[j][0] || 0; // x[j] let xj; if (!equalScalar(bj, 0)) { // value at [j, j] const vjj = mdata[j][j]; if (equalScalar(vjj, 0)) { // system cannot be solved throw new Error('Linear system cannot be solved since matrix is singular'); } xj = divideScalar(bj, vjj); // loop rows for (let i = j - 1; i >= 0; i--) { // update copy of b bdata[i] = [subtractScalar(bdata[i][0] || 0, multiplyScalar(xj, mdata[i][j]))]; } } else { // zero value at j xj = 0; } // update x x[j] = [xj]; } return new DenseMatrix({ data: x, size: [rows, 1] }); } function _sparseBackwardSubstitution(m, b) { // make b into a column vector b = solveValidation(m, b, true); const bdata = b._data; const rows = m._size[0]; const columns = m._size[1]; const values = m._values; const index = m._index; const ptr = m._ptr; // result const x = []; // loop columns backwards for (let j = columns - 1; j >= 0; j--) { const bj = bdata[j][0] || 0; if (!equalScalar(bj, 0)) { // non-degenerate row, find solution let vjj = 0; // upper triangular matrix values & index (column j) const jValues = []; const jIndices = []; // first & last indeces in column const firstIndex = ptr[j]; const lastIndex = ptr[j + 1]; // values in column, find value at [j, j], loop backwards for (let k = lastIndex - 1; k >= firstIndex; k--) { const i = index[k]; // check row (rows are not sorted!) if (i === j) { vjj = values[k]; } else if (i < j) { // store upper triangular jValues.push(values[k]); jIndices.push(i); } } // at this point we must have a value in vjj if (equalScalar(vjj, 0)) { throw new Error('Linear system cannot be solved since matrix is singular'); } const xj = divideScalar(bj, vjj); for (let k = 0, lastIndex = jIndices.length; k < lastIndex; k++) { const i = jIndices[k]; bdata[i] = [subtractScalar(bdata[i][0], multiplyScalar(xj, jValues[k]))]; } x[j] = [xj]; } else { // degenerate row, we can choose any value x[j] = [0]; } } return new DenseMatrix({ data: x, size: [rows, 1] }); } });