"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createPolynomialRoot = void 0; var _factory = require("../../utils/factory.js"); const name = 'polynomialRoot'; const dependencies = ['typed', 'isZero', 'equalScalar', 'add', 'subtract', 'multiply', 'divide', 'sqrt', 'unaryMinus', 'cbrt', 'typeOf', 'im', 're']; const createPolynomialRoot = exports.createPolynomialRoot = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => { let { typed, isZero, equalScalar, add, subtract, multiply, divide, sqrt, unaryMinus, cbrt, typeOf, im, re } = _ref; /** * Finds the numerical values of the distinct roots of a polynomial with real or complex coefficients. * Currently operates only on linear, quadratic, and cubic polynomials using the standard * formulas for the roots. * * Syntax: * * math.polynomialRoot(constant, linearCoeff, quadraticCoeff, cubicCoeff) * * Examples: * // linear * math.polynomialRoot(6, 3) // [-2] * math.polynomialRoot(math.complex(6,3), 3) // [-2 - i] * math.polynomialRoot(math.complex(6,3), math.complex(2,1)) // [-3 + 0i] * // quadratic * math.polynomialRoot(2, -3, 1) // [2, 1] * math.polynomialRoot(8, 8, 2) // [-2] * math.polynomialRoot(-2, 0, 1) // [1.4142135623730951, -1.4142135623730951] * math.polynomialRoot(2, -2, 1) // [1 + i, 1 - i] * math.polynomialRoot(math.complex(1,3), math.complex(-3, -2), 1) // [2 + i, 1 + i] * // cubic * math.polynomialRoot(-6, 11, -6, 1) // [1, 3, 2] * math.polynomialRoot(-8, 0, 0, 1) // [-1 - 1.7320508075688774i, 2, -1 + 1.7320508075688774i] * math.polynomialRoot(0, 8, 8, 2) // [0, -2] * math.polynomialRoot(1, 1, 1, 1) // [-1 + 0i, 0 - i, 0 + i] * * See also: * cbrt, sqrt * * @param {... number | Complex} coeffs * The coefficients of the polynomial, starting with with the constant coefficent, followed * by the linear coefficient and subsequent coefficients of increasing powers. * @return {Array} The distinct roots of the polynomial */ return typed(name, { 'number|Complex, ...number|Complex': (constant, restCoeffs) => { const coeffs = [constant, ...restCoeffs]; while (coeffs.length > 0 && isZero(coeffs[coeffs.length - 1])) { coeffs.pop(); } if (coeffs.length < 2) { throw new RangeError(`Polynomial [${constant}, ${restCoeffs}] must have a non-zero non-constant coefficient`); } switch (coeffs.length) { case 2: // linear return [unaryMinus(divide(coeffs[0], coeffs[1]))]; case 3: { // quadratic const [c, b, a] = coeffs; const denom = multiply(2, a); const d1 = multiply(b, b); const d2 = multiply(4, a, c); if (equalScalar(d1, d2)) return [divide(unaryMinus(b), denom)]; const discriminant = sqrt(subtract(d1, d2)); return [divide(subtract(discriminant, b), denom), divide(subtract(unaryMinus(discriminant), b), denom)]; } case 4: { // cubic, cf. https://en.wikipedia.org/wiki/Cubic_equation const [d, c, b, a] = coeffs; const denom = unaryMinus(multiply(3, a)); const D0_1 = multiply(b, b); const D0_2 = multiply(3, a, c); const D1_1 = add(multiply(2, b, b, b), multiply(27, a, a, d)); const D1_2 = multiply(9, a, b, c); if (equalScalar(D0_1, D0_2) && equalScalar(D1_1, D1_2)) { return [divide(b, denom)]; } const Delta0 = subtract(D0_1, D0_2); const Delta1 = subtract(D1_1, D1_2); const discriminant1 = add(multiply(18, a, b, c, d), multiply(b, b, c, c)); const discriminant2 = add(multiply(4, b, b, b, d), multiply(4, a, c, c, c), multiply(27, a, a, d, d)); if (equalScalar(discriminant1, discriminant2)) { return [divide(subtract(multiply(4, a, b, c), add(multiply(9, a, a, d), multiply(b, b, b))), multiply(a, Delta0)), // simple root divide(subtract(multiply(9, a, d), multiply(b, c)), multiply(2, Delta0)) // double root ]; } // OK, we have three distinct roots let Ccubed; if (equalScalar(D0_1, D0_2)) { Ccubed = Delta1; } else { Ccubed = divide(add(Delta1, sqrt(subtract(multiply(Delta1, Delta1), multiply(4, Delta0, Delta0, Delta0)))), 2); } const allRoots = true; const rawRoots = cbrt(Ccubed, allRoots).toArray().map(C => divide(add(b, C, divide(Delta0, C)), denom)); return rawRoots.map(r => { if (typeOf(r) === 'Complex' && equalScalar(re(r), re(r) + im(r))) { return re(r); } return r; }); } default: throw new RangeError(`only implemented for cubic or lower-order polynomials, not ${coeffs}`); } } }); });