"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.createLyap = void 0; var _factory = require("../../utils/factory.js"); const name = 'lyap'; const dependencies = ['typed', 'matrix', 'sylvester', 'multiply', 'transpose']; const createLyap = exports.createLyap = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => { let { typed, matrix, sylvester, multiply, transpose } = _ref; /** * * Solves the Continuous-time Lyapunov equation AP+PA'+Q=0 for P, where * Q is an input matrix. When Q is symmetric, P is also symmetric. Notice * that different equivalent definitions exist for the Continuous-time * Lyapunov equation. * https://en.wikipedia.org/wiki/Lyapunov_equation * * Syntax: * * math.lyap(A, Q) * * Examples: * * const A = [[-2, 0], [1, -4]] * const Q = [[3, 1], [1, 3]] * const P = math.lyap(A, Q) * * See also: * * sylvester, schur * * @param {Matrix | Array} A Matrix A * @param {Matrix | Array} Q Matrix Q * @return {Matrix | Array} Matrix P solution to the Continuous-time Lyapunov equation AP+PA'=Q */ return typed(name, { 'Matrix, Matrix': function (A, Q) { return sylvester(A, transpose(A), multiply(-1, Q)); }, 'Array, Matrix': function (A, Q) { return sylvester(matrix(A), transpose(matrix(A)), multiply(-1, Q)); }, 'Matrix, Array': function (A, Q) { return sylvester(A, transpose(matrix(A)), matrix(multiply(-1, Q))); }, 'Array, Array': function (A, Q) { return sylvester(matrix(A), transpose(matrix(A)), matrix(multiply(-1, Q))).toArray(); } }); });