import { factory } from '../../utils/factory.js'; import { createMatAlgo01xDSid } from '../../type/matrix/utils/matAlgo01xDSid.js'; import { createMatAlgo02xDS0 } from '../../type/matrix/utils/matAlgo02xDS0.js'; import { createMatAlgo06xS0S0 } from '../../type/matrix/utils/matAlgo06xS0S0.js'; import { createMatAlgo11xS0s } from '../../type/matrix/utils/matAlgo11xS0s.js'; import { createMatrixAlgorithmSuite } from '../../type/matrix/utils/matrixAlgorithmSuite.js'; import { nthRootNumber } from '../../plain/number/index.js'; var name = 'nthRoot'; var dependencies = ['typed', 'matrix', 'equalScalar', 'BigNumber', 'concat']; export var createNthRoot = /* #__PURE__ */factory(name, dependencies, _ref => { var { typed, matrix, equalScalar, BigNumber: _BigNumber, concat } = _ref; var matAlgo01xDSid = createMatAlgo01xDSid({ typed }); var matAlgo02xDS0 = createMatAlgo02xDS0({ typed, equalScalar }); var matAlgo06xS0S0 = createMatAlgo06xS0S0({ typed, equalScalar }); var matAlgo11xS0s = createMatAlgo11xS0s({ typed, equalScalar }); var matrixAlgorithmSuite = createMatrixAlgorithmSuite({ typed, matrix, concat }); /** * Calculate the nth root of a value. * The principal nth root of a positive real number A, is the positive real * solution of the equation * * x^root = A * * For matrices, the function is evaluated element wise. * * Syntax: * * math.nthRoot(a) * math.nthRoot(a, root) * * Examples: * * math.nthRoot(9, 2) // returns 3 (since 3^2 == 9) * math.sqrt(9) // returns 3 (since 3^2 == 9) * math.nthRoot(64, 3) // returns 4 (since 4^3 == 64) * * See also: * * sqrt, pow * * @param {number | BigNumber | Array | Matrix | Complex} a * Value for which to calculate the nth root * @param {number | BigNumber} [root=2] The root. * @return {number | Complex | Array | Matrix} Returns the nth root of `a` */ function complexErr() { throw new Error('Complex number not supported in function nthRoot. Use nthRoots instead.'); } return typed(name, { number: nthRootNumber, 'number, number': nthRootNumber, BigNumber: x => _bigNthRoot(x, new _BigNumber(2)), 'BigNumber, BigNumber': _bigNthRoot, Complex: complexErr, 'Complex, number': complexErr, Array: typed.referTo('DenseMatrix,number', selfDn => x => selfDn(matrix(x), 2).valueOf()), DenseMatrix: typed.referTo('DenseMatrix,number', selfDn => x => selfDn(x, 2)), SparseMatrix: typed.referTo('SparseMatrix,number', selfSn => x => selfSn(x, 2)), 'SparseMatrix, SparseMatrix': typed.referToSelf(self => (x, y) => { // density must be one (no zeros in matrix) if (y.density() === 1) { // sparse + sparse return matAlgo06xS0S0(x, y, self); } else { // throw exception throw new Error('Root must be non-zero'); } }), 'DenseMatrix, SparseMatrix': typed.referToSelf(self => (x, y) => { // density must be one (no zeros in matrix) if (y.density() === 1) { // dense + sparse return matAlgo01xDSid(x, y, self, false); } else { // throw exception throw new Error('Root must be non-zero'); } }), 'Array, SparseMatrix': typed.referTo('DenseMatrix,SparseMatrix', selfDS => (x, y) => selfDS(matrix(x), y)), 'number | BigNumber, SparseMatrix': typed.referToSelf(self => (x, y) => { // density must be one (no zeros in matrix) if (y.density() === 1) { // sparse - scalar return matAlgo11xS0s(y, x, self, true); } else { // throw exception throw new Error('Root must be non-zero'); } }) }, matrixAlgorithmSuite({ scalar: 'number | BigNumber', SD: matAlgo02xDS0, Ss: matAlgo11xS0s, sS: false })); /** * Calculate the nth root of a for BigNumbers, solve x^root == a * https://rosettacode.org/wiki/Nth_root#JavaScript * @param {BigNumber} a * @param {BigNumber} root * @private */ function _bigNthRoot(a, root) { var precision = _BigNumber.precision; var Big = _BigNumber.clone({ precision: precision + 2 }); var zero = new _BigNumber(0); var one = new Big(1); var inv = root.isNegative(); if (inv) { root = root.neg(); } if (root.isZero()) { throw new Error('Root must be non-zero'); } if (a.isNegative() && !root.abs().mod(2).equals(1)) { throw new Error('Root must be odd when a is negative.'); } // edge cases zero and infinity if (a.isZero()) { return inv ? new Big(Infinity) : 0; } if (!a.isFinite()) { return inv ? zero : a; } var x = a.abs().pow(one.div(root)); // If a < 0, we require that root is an odd integer, // so (-1) ^ (1/root) = -1 x = a.isNeg() ? x.neg() : x; return new _BigNumber((inv ? one.div(x) : x).toPrecision(precision)); } }); export var createNthRootNumber = /* #__PURE__ */factory(name, ['typed'], _ref2 => { var { typed } = _ref2; return typed(name, { number: nthRootNumber, 'number, number': nthRootNumber }); });