'use strict'; /** * * This class allows the manipulation of complex numbers. * You can pass a complex number in different formats. Either as object, double, string or two integer parameters. * * Object form * { re: , im: } * { arg: , abs: } * { phi: , r: } * * Array / Vector form * [ real, imaginary ] * * Double form * 99.3 - Single double value * * String form * '23.1337' - Simple real number * '15+3i' - a simple complex number * '3-i' - a simple complex number * * Example: * * const c = new Complex('99.3+8i'); * c.mul({r: 3, i: 9}).div(4.9).sub(3, 2); * */ const cosh = Math.cosh || function (x) { return Math.abs(x) < 1e-9 ? 1 - x : (Math.exp(x) + Math.exp(-x)) * 0.5; }; const sinh = Math.sinh || function (x) { return Math.abs(x) < 1e-9 ? x : (Math.exp(x) - Math.exp(-x)) * 0.5; }; /** * Calculates cos(x) - 1 using Taylor series if x is small (-¼π ≤ x ≤ ¼π). * * @param {number} x * @returns {number} cos(x) - 1 */ const cosm1 = function (x) { const b = Math.PI / 4; if (-b > x || x > b) { return Math.cos(x) - 1.0; } /* Calculate horner form of polynomial of taylor series in Q let fac = 1, alt = 1, pol = {}; for (let i = 0; i <= 16; i++) { fac*= i || 1; if (i % 2 == 0) { pol[i] = new Fraction(1, alt * fac); alt = -alt; } } console.log(new Polynomial(pol).toHorner()); // (((((((1/20922789888000x^2-1/87178291200)x^2+1/479001600)x^2-1/3628800)x^2+1/40320)x^2-1/720)x^2+1/24)x^2-1/2)x^2+1 */ const xx = x * x; return xx * ( xx * ( xx * ( xx * ( xx * ( xx * ( xx * ( xx / 20922789888000 - 1 / 87178291200) + 1 / 479001600) - 1 / 3628800) + 1 / 40320) - 1 / 720) + 1 / 24) - 1 / 2); }; const hypot = function (x, y) { x = Math.abs(x); y = Math.abs(y); // Ensure `x` is the larger value if (x < y) [x, y] = [y, x]; // If both are below the threshold, use straightforward Pythagoras if (x < 1e8) return Math.sqrt(x * x + y * y); // For larger values, scale to avoid overflow y /= x; return x * Math.sqrt(1 + y * y); }; const parser_exit = function () { throw SyntaxError('Invalid Param'); }; /** * Calculates log(sqrt(a^2+b^2)) in a way to avoid overflows * * @param {number} a * @param {number} b * @returns {number} */ function logHypot(a, b) { const _a = Math.abs(a); const _b = Math.abs(b); if (a === 0) { return Math.log(_b); } if (b === 0) { return Math.log(_a); } if (_a < 3000 && _b < 3000) { return Math.log(a * a + b * b) * 0.5; } /* I got 4 ideas to compute this property without overflow: * * Testing 1000000 times with random samples for a,b ∈ [1, 1000000000] against a big decimal library to get an error estimate * * 1. Only eliminate the square root: (OVERALL ERROR: 3.9122483030951116e-11) Math.log(a * a + b * b) / 2 * * * 2. Try to use the non-overflowing pythagoras: (OVERALL ERROR: 8.889760039210159e-10) const fn = function(a, b) { a = Math.abs(a); b = Math.abs(b); let t = Math.min(a, b); a = Math.max(a, b); t = t / a; return Math.log(a) + Math.log(1 + t * t) / 2; }; * 3. Abuse the identity cos(atan(y/x) = x / sqrt(x^2+y^2): (OVERALL ERROR: 3.4780178737037204e-10) Math.log(a / Math.cos(Math.atan2(b, a))) * 4. Use 3. and apply log rules: (OVERALL ERROR: 1.2014087502620896e-9) Math.log(a) - Math.log(Math.cos(Math.atan2(b, a))) */ a = a * 0.5; b = b * 0.5; return 0.5 * Math.log(a * a + b * b) + Math.LN2; } const P = { 're': 0, 'im': 0 }; const parse = function (a, b) { const z = P; if (a === undefined || a === null) { z['re'] = z['im'] = 0; } else if (b !== undefined) { z['re'] = a; z['im'] = b; } else switch (typeof a) { case 'object': if ('im' in a && 're' in a) { z['re'] = a['re']; z['im'] = a['im']; } else if ('abs' in a && 'arg' in a) { if (!isFinite(a['abs']) && isFinite(a['arg'])) { return Complex['INFINITY']; } z['re'] = a['abs'] * Math.cos(a['arg']); z['im'] = a['abs'] * Math.sin(a['arg']); } else if ('r' in a && 'phi' in a) { if (!isFinite(a['r']) && isFinite(a['phi'])) { return Complex['INFINITY']; } z['re'] = a['r'] * Math.cos(a['phi']); z['im'] = a['r'] * Math.sin(a['phi']); } else if (a.length === 2) { // Quick array check z['re'] = a[0]; z['im'] = a[1]; } else { parser_exit(); } break; case 'string': z['im'] = /* void */ z['re'] = 0; const tokens = a.replace(/_/g, '') .match(/\d+\.?\d*e[+-]?\d+|\d+\.?\d*|\.\d+|./g); let plus = 1; let minus = 0; if (tokens === null) { parser_exit(); } for (let i = 0; i < tokens.length; i++) { const c = tokens[i]; if (c === ' ' || c === '\t' || c === '\n') { /* void */ } else if (c === '+') { plus++; } else if (c === '-') { minus++; } else if (c === 'i' || c === 'I') { if (plus + minus === 0) { parser_exit(); } if (tokens[i + 1] !== ' ' && !isNaN(tokens[i + 1])) { z['im'] += parseFloat((minus % 2 ? '-' : '') + tokens[i + 1]); i++; } else { z['im'] += parseFloat((minus % 2 ? '-' : '') + '1'); } plus = minus = 0; } else { if (plus + minus === 0 || isNaN(c)) { parser_exit(); } if (tokens[i + 1] === 'i' || tokens[i + 1] === 'I') { z['im'] += parseFloat((minus % 2 ? '-' : '') + c); i++; } else { z['re'] += parseFloat((minus % 2 ? '-' : '') + c); } plus = minus = 0; } } // Still something on the stack if (plus + minus > 0) { parser_exit(); } break; case 'number': z['im'] = 0; z['re'] = a; break; default: parser_exit(); } if (isNaN(z['re']) || isNaN(z['im'])) { // If a calculation is NaN, we treat it as NaN and don't throw //parser_exit(); } return z; }; /** * @constructor * @returns {Complex} */ function Complex(a, b) { if (!(this instanceof Complex)) { return new Complex(a, b); } const z = parse(a, b); this['re'] = z['re']; this['im'] = z['im']; } Complex.prototype = { 're': 0, 'im': 0, /** * Calculates the sign of a complex number, which is a normalized complex * * @returns {Complex} */ 'sign': function () { const abs = hypot(this['re'], this['im']); return new Complex( this['re'] / abs, this['im'] / abs); }, /** * Adds two complex numbers * * @returns {Complex} */ 'add': function (a, b) { const z = parse(a, b); const tInfin = this['isInfinite'](); const zInfin = !(isFinite(z['re']) && isFinite(z['im'])); if (tInfin || zInfin) { if (tInfin && zInfin) { // Infinity + Infinity = NaN return Complex['NAN']; } // Infinity + z = Infinity { where z != Infinity } return Complex['INFINITY']; } return new Complex( this['re'] + z['re'], this['im'] + z['im']); }, /** * Subtracts two complex numbers * * @returns {Complex} */ 'sub': function (a, b) { const z = parse(a, b); const tInfin = this['isInfinite'](); const zInfin = !(isFinite(z['re']) && isFinite(z['im'])); if (tInfin || zInfin) { if (tInfin && zInfin) { // Infinity - Infinity = NaN return Complex['NAN']; } // Infinity - z = Infinity { where z != Infinity } return Complex['INFINITY']; } return new Complex( this['re'] - z['re'], this['im'] - z['im']); }, /** * Multiplies two complex numbers * * @returns {Complex} */ 'mul': function (a, b) { const z = parse(a, b); const tInfin = this['isInfinite'](); const zInfin = !(isFinite(z['re']) && isFinite(z['im'])); const tIsZero = this['re'] === 0 && this['im'] === 0; const zIsZero = z['re'] === 0 && z['im'] === 0; // Infinity * 0 = NaN if (tInfin && zIsZero || zInfin && tIsZero) { return Complex['NAN']; } // Infinity * z = Infinity { where z != 0 } if (tInfin || zInfin) { return Complex['INFINITY']; } // Shortcut for real values if (z['im'] === 0 && this['im'] === 0) { return new Complex(this['re'] * z['re'], 0); } return new Complex( this['re'] * z['re'] - this['im'] * z['im'], this['re'] * z['im'] + this['im'] * z['re']); }, /** * Divides two complex numbers * * @returns {Complex} */ 'div': function (a, b) { const z = parse(a, b); const tInfin = this['isInfinite'](); const zInfin = !(isFinite(z['re']) && isFinite(z['im'])); const tIsZero = this['re'] === 0 && this['im'] === 0; const zIsZero = z['re'] === 0 && z['im'] === 0; // 0 / 0 = NaN and Infinity / Infinity = NaN if (tIsZero && zIsZero || tInfin && zInfin) { return Complex['NAN']; } // Infinity / 0 = Infinity if (zIsZero || tInfin) { return Complex['INFINITY']; } // 0 / Infinity = 0 if (tIsZero || zInfin) { return Complex['ZERO']; } if (0 === z['im']) { // Divisor is real return new Complex(this['re'] / z['re'], this['im'] / z['re']); } if (Math.abs(z['re']) < Math.abs(z['im'])) { const x = z['re'] / z['im']; const t = z['re'] * x + z['im']; return new Complex( (this['re'] * x + this['im']) / t, (this['im'] * x - this['re']) / t); } else { const x = z['im'] / z['re']; const t = z['im'] * x + z['re']; return new Complex( (this['re'] + this['im'] * x) / t, (this['im'] - this['re'] * x) / t); } }, /** * Calculate the power of two complex numbers * * @returns {Complex} */ 'pow': function (a, b) { const z = parse(a, b); const tIsZero = this['re'] === 0 && this['im'] === 0; const zIsZero = z['re'] === 0 && z['im'] === 0; if (zIsZero) { return Complex['ONE']; } // If the exponent is real if (z['im'] === 0) { if (this['im'] === 0 && this['re'] > 0) { return new Complex(Math.pow(this['re'], z['re']), 0); } else if (this['re'] === 0) { // If base is fully imaginary switch ((z['re'] % 4 + 4) % 4) { case 0: return new Complex(Math.pow(this['im'], z['re']), 0); case 1: return new Complex(0, Math.pow(this['im'], z['re'])); case 2: return new Complex(-Math.pow(this['im'], z['re']), 0); case 3: return new Complex(0, -Math.pow(this['im'], z['re'])); } } } /* I couldn't find a good formula, so here is a derivation and optimization * * z_1^z_2 = (a + bi)^(c + di) * = exp((c + di) * log(a + bi) * = pow(a^2 + b^2, (c + di) / 2) * exp(i(c + di)atan2(b, a)) * =>... * Re = (pow(a^2 + b^2, c / 2) * exp(-d * atan2(b, a))) * cos(d * log(a^2 + b^2) / 2 + c * atan2(b, a)) * Im = (pow(a^2 + b^2, c / 2) * exp(-d * atan2(b, a))) * sin(d * log(a^2 + b^2) / 2 + c * atan2(b, a)) * * =>... * Re = exp(c * log(sqrt(a^2 + b^2)) - d * atan2(b, a)) * cos(d * log(sqrt(a^2 + b^2)) + c * atan2(b, a)) * Im = exp(c * log(sqrt(a^2 + b^2)) - d * atan2(b, a)) * sin(d * log(sqrt(a^2 + b^2)) + c * atan2(b, a)) * * => * Re = exp(c * logsq2 - d * arg(z_1)) * cos(d * logsq2 + c * arg(z_1)) * Im = exp(c * logsq2 - d * arg(z_1)) * sin(d * logsq2 + c * arg(z_1)) * */ if (tIsZero && z['re'] > 0) { // Same behavior as Wolframalpha, Zero if real part is zero return Complex['ZERO']; } const arg = Math.atan2(this['im'], this['re']); const loh = logHypot(this['re'], this['im']); let re = Math.exp(z['re'] * loh - z['im'] * arg); let im = z['im'] * loh + z['re'] * arg; return new Complex( re * Math.cos(im), re * Math.sin(im)); }, /** * Calculate the complex square root * * @returns {Complex} */ 'sqrt': function () { const a = this['re']; const b = this['im']; if (b === 0) { // Real number case if (a >= 0) { return new Complex(Math.sqrt(a), 0); } else { return new Complex(0, Math.sqrt(-a)); } } const r = hypot(a, b); let re = Math.sqrt(0.5 * (r + Math.abs(a))); // sqrt(2x) / 2 = sqrt(x / 2) let im = Math.abs(b) / (2 * re); if (a >= 0) { return new Complex(re, b < 0 ? -im : im); } else { return new Complex(im, b < 0 ? -re : re); } }, /** * Calculate the complex exponent * * @returns {Complex} */ 'exp': function () { const er = Math.exp(this['re']); if (this['im'] === 0) { return new Complex(er, 0); } return new Complex( er * Math.cos(this['im']), er * Math.sin(this['im'])); }, /** * Calculate the complex exponent and subtracts one. * * This may be more accurate than `Complex(x).exp().sub(1)` if * `x` is small. * * @returns {Complex} */ 'expm1': function () { /** * exp(a + i*b) - 1 = exp(a) * (cos(b) + j*sin(b)) - 1 = expm1(a)*cos(b) + cosm1(b) + j*exp(a)*sin(b) */ const a = this['re']; const b = this['im']; return new Complex( Math.expm1(a) * Math.cos(b) + cosm1(b), Math.exp(a) * Math.sin(b)); }, /** * Calculate the natural log * * @returns {Complex} */ 'log': function () { const a = this['re']; const b = this['im']; if (b === 0 && a > 0) { return new Complex(Math.log(a), 0); } return new Complex( logHypot(a, b), Math.atan2(b, a)); }, /** * Calculate the magnitude of the complex number * * @returns {number} */ 'abs': function () { return hypot(this['re'], this['im']); }, /** * Calculate the angle of the complex number * * @returns {number} */ 'arg': function () { return Math.atan2(this['im'], this['re']); }, /** * Calculate the sine of the complex number * * @returns {Complex} */ 'sin': function () { // sin(z) = ( e^iz - e^-iz ) / 2i // = sin(a)cosh(b) + i cos(a)sinh(b) const a = this['re']; const b = this['im']; return new Complex( Math.sin(a) * cosh(b), Math.cos(a) * sinh(b)); }, /** * Calculate the cosine * * @returns {Complex} */ 'cos': function () { // cos(z) = ( e^iz + e^-iz ) / 2 // = cos(a)cosh(b) - i sin(a)sinh(b) const a = this['re']; const b = this['im']; return new Complex( Math.cos(a) * cosh(b), -Math.sin(a) * sinh(b)); }, /** * Calculate the tangent * * @returns {Complex} */ 'tan': function () { // tan(z) = sin(z) / cos(z) // = ( e^iz - e^-iz ) / ( i( e^iz + e^-iz ) ) // = ( e^2iz - 1 ) / i( e^2iz + 1 ) // = ( sin(2a) + i sinh(2b) ) / ( cos(2a) + cosh(2b) ) const a = 2 * this['re']; const b = 2 * this['im']; const d = Math.cos(a) + cosh(b); return new Complex( Math.sin(a) / d, sinh(b) / d); }, /** * Calculate the cotangent * * @returns {Complex} */ 'cot': function () { // cot(c) = i(e^(ci) + e^(-ci)) / (e^(ci) - e^(-ci)) const a = 2 * this['re']; const b = 2 * this['im']; const d = Math.cos(a) - cosh(b); return new Complex( -Math.sin(a) / d, sinh(b) / d); }, /** * Calculate the secant * * @returns {Complex} */ 'sec': function () { // sec(c) = 2 / (e^(ci) + e^(-ci)) const a = this['re']; const b = this['im']; const d = 0.5 * cosh(2 * b) + 0.5 * Math.cos(2 * a); return new Complex( Math.cos(a) * cosh(b) / d, Math.sin(a) * sinh(b) / d); }, /** * Calculate the cosecans * * @returns {Complex} */ 'csc': function () { // csc(c) = 2i / (e^(ci) - e^(-ci)) const a = this['re']; const b = this['im']; const d = 0.5 * cosh(2 * b) - 0.5 * Math.cos(2 * a); return new Complex( Math.sin(a) * cosh(b) / d, -Math.cos(a) * sinh(b) / d); }, /** * Calculate the complex arcus sinus * * @returns {Complex} */ 'asin': function () { // asin(c) = -i * log(ci + sqrt(1 - c^2)) const a = this['re']; const b = this['im']; const t1 = new Complex( b * b - a * a + 1, -2 * a * b)['sqrt'](); const t2 = new Complex( t1['re'] - b, t1['im'] + a)['log'](); return new Complex(t2['im'], -t2['re']); }, /** * Calculate the complex arcus cosinus * * @returns {Complex} */ 'acos': function () { // acos(c) = i * log(c - i * sqrt(1 - c^2)) const a = this['re']; const b = this['im']; const t1 = new Complex( b * b - a * a + 1, -2 * a * b)['sqrt'](); const t2 = new Complex( t1['re'] - b, t1['im'] + a)['log'](); return new Complex(Math.PI / 2 - t2['im'], t2['re']); }, /** * Calculate the complex arcus tangent * * @returns {Complex} */ 'atan': function () { // atan(c) = i / 2 log((i + x) / (i - x)) const a = this['re']; const b = this['im']; if (a === 0) { if (b === 1) { return new Complex(0, Infinity); } if (b === -1) { return new Complex(0, -Infinity); } } const d = a * a + (1.0 - b) * (1.0 - b); const t1 = new Complex( (1 - b * b - a * a) / d, -2 * a / d).log(); return new Complex(-0.5 * t1['im'], 0.5 * t1['re']); }, /** * Calculate the complex arcus cotangent * * @returns {Complex} */ 'acot': function () { // acot(c) = i / 2 log((c - i) / (c + i)) const a = this['re']; const b = this['im']; if (b === 0) { return new Complex(Math.atan2(1, a), 0); } const d = a * a + b * b; return (d !== 0) ? new Complex( a / d, -b / d).atan() : new Complex( (a !== 0) ? a / 0 : 0, (b !== 0) ? -b / 0 : 0).atan(); }, /** * Calculate the complex arcus secant * * @returns {Complex} */ 'asec': function () { // asec(c) = -i * log(1 / c + sqrt(1 - i / c^2)) const a = this['re']; const b = this['im']; if (a === 0 && b === 0) { return new Complex(0, Infinity); } const d = a * a + b * b; return (d !== 0) ? new Complex( a / d, -b / d).acos() : new Complex( (a !== 0) ? a / 0 : 0, (b !== 0) ? -b / 0 : 0).acos(); }, /** * Calculate the complex arcus cosecans * * @returns {Complex} */ 'acsc': function () { // acsc(c) = -i * log(i / c + sqrt(1 - 1 / c^2)) const a = this['re']; const b = this['im']; if (a === 0 && b === 0) { return new Complex(Math.PI / 2, Infinity); } const d = a * a + b * b; return (d !== 0) ? new Complex( a / d, -b / d).asin() : new Complex( (a !== 0) ? a / 0 : 0, (b !== 0) ? -b / 0 : 0).asin(); }, /** * Calculate the complex sinh * * @returns {Complex} */ 'sinh': function () { // sinh(c) = (e^c - e^-c) / 2 const a = this['re']; const b = this['im']; return new Complex( sinh(a) * Math.cos(b), cosh(a) * Math.sin(b)); }, /** * Calculate the complex cosh * * @returns {Complex} */ 'cosh': function () { // cosh(c) = (e^c + e^-c) / 2 const a = this['re']; const b = this['im']; return new Complex( cosh(a) * Math.cos(b), sinh(a) * Math.sin(b)); }, /** * Calculate the complex tanh * * @returns {Complex} */ 'tanh': function () { // tanh(c) = (e^c - e^-c) / (e^c + e^-c) const a = 2 * this['re']; const b = 2 * this['im']; const d = cosh(a) + Math.cos(b); return new Complex( sinh(a) / d, Math.sin(b) / d); }, /** * Calculate the complex coth * * @returns {Complex} */ 'coth': function () { // coth(c) = (e^c + e^-c) / (e^c - e^-c) const a = 2 * this['re']; const b = 2 * this['im']; const d = cosh(a) - Math.cos(b); return new Complex( sinh(a) / d, -Math.sin(b) / d); }, /** * Calculate the complex coth * * @returns {Complex} */ 'csch': function () { // csch(c) = 2 / (e^c - e^-c) const a = this['re']; const b = this['im']; const d = Math.cos(2 * b) - cosh(2 * a); return new Complex( -2 * sinh(a) * Math.cos(b) / d, 2 * cosh(a) * Math.sin(b) / d); }, /** * Calculate the complex sech * * @returns {Complex} */ 'sech': function () { // sech(c) = 2 / (e^c + e^-c) const a = this['re']; const b = this['im']; const d = Math.cos(2 * b) + cosh(2 * a); return new Complex( 2 * cosh(a) * Math.cos(b) / d, -2 * sinh(a) * Math.sin(b) / d); }, /** * Calculate the complex asinh * * @returns {Complex} */ 'asinh': function () { // asinh(c) = log(c + sqrt(c^2 + 1)) let tmp = this['im']; this['im'] = -this['re']; this['re'] = tmp; const res = this['asin'](); this['re'] = -this['im']; this['im'] = tmp; tmp = res['re']; res['re'] = -res['im']; res['im'] = tmp; return res; }, /** * Calculate the complex acosh * * @returns {Complex} */ 'acosh': function () { // acosh(c) = log(c + sqrt(c^2 - 1)) const res = this['acos'](); if (res['im'] <= 0) { const tmp = res['re']; res['re'] = -res['im']; res['im'] = tmp; } else { const tmp = res['im']; res['im'] = -res['re']; res['re'] = tmp; } return res; }, /** * Calculate the complex atanh * * @returns {Complex} */ 'atanh': function () { // atanh(c) = log((1+c) / (1-c)) / 2 const a = this['re']; const b = this['im']; const noIM = a > 1 && b === 0; const oneMinus = 1 - a; const onePlus = 1 + a; const d = oneMinus * oneMinus + b * b; const x = (d !== 0) ? new Complex( (onePlus * oneMinus - b * b) / d, (b * oneMinus + onePlus * b) / d) : new Complex( (a !== -1) ? (a / 0) : 0, (b !== 0) ? (b / 0) : 0); const temp = x['re']; x['re'] = logHypot(x['re'], x['im']) / 2; x['im'] = Math.atan2(x['im'], temp) / 2; if (noIM) { x['im'] = -x['im']; } return x; }, /** * Calculate the complex acoth * * @returns {Complex} */ 'acoth': function () { // acoth(c) = log((c+1) / (c-1)) / 2 const a = this['re']; const b = this['im']; if (a === 0 && b === 0) { return new Complex(0, Math.PI / 2); } const d = a * a + b * b; return (d !== 0) ? new Complex( a / d, -b / d).atanh() : new Complex( (a !== 0) ? a / 0 : 0, (b !== 0) ? -b / 0 : 0).atanh(); }, /** * Calculate the complex acsch * * @returns {Complex} */ 'acsch': function () { // acsch(c) = log((1+sqrt(1+c^2))/c) const a = this['re']; const b = this['im']; if (b === 0) { return new Complex( (a !== 0) ? Math.log(a + Math.sqrt(a * a + 1)) : Infinity, 0); } const d = a * a + b * b; return (d !== 0) ? new Complex( a / d, -b / d).asinh() : new Complex( (a !== 0) ? a / 0 : 0, (b !== 0) ? -b / 0 : 0).asinh(); }, /** * Calculate the complex asech * * @returns {Complex} */ 'asech': function () { // asech(c) = log((1+sqrt(1-c^2))/c) const a = this['re']; const b = this['im']; if (this['isZero']()) { return Complex['INFINITY']; } const d = a * a + b * b; return (d !== 0) ? new Complex( a / d, -b / d).acosh() : new Complex( (a !== 0) ? a / 0 : 0, (b !== 0) ? -b / 0 : 0).acosh(); }, /** * Calculate the complex inverse 1/z * * @returns {Complex} */ 'inverse': function () { // 1 / 0 = Infinity and 1 / Infinity = 0 if (this['isZero']()) { return Complex['INFINITY']; } if (this['isInfinite']()) { return Complex['ZERO']; } const a = this['re']; const b = this['im']; const d = a * a + b * b; return new Complex(a / d, -b / d); }, /** * Returns the complex conjugate * * @returns {Complex} */ 'conjugate': function () { return new Complex(this['re'], -this['im']); }, /** * Gets the negated complex number * * @returns {Complex} */ 'neg': function () { return new Complex(-this['re'], -this['im']); }, /** * Ceils the actual complex number * * @returns {Complex} */ 'ceil': function (places) { places = Math.pow(10, places || 0); return new Complex( Math.ceil(this['re'] * places) / places, Math.ceil(this['im'] * places) / places); }, /** * Floors the actual complex number * * @returns {Complex} */ 'floor': function (places) { places = Math.pow(10, places || 0); return new Complex( Math.floor(this['re'] * places) / places, Math.floor(this['im'] * places) / places); }, /** * Ceils the actual complex number * * @returns {Complex} */ 'round': function (places) { places = Math.pow(10, places || 0); return new Complex( Math.round(this['re'] * places) / places, Math.round(this['im'] * places) / places); }, /** * Compares two complex numbers * * **Note:** new Complex(Infinity).equals(Infinity) === false * * @returns {boolean} */ 'equals': function (a, b) { const z = parse(a, b); return Math.abs(z['re'] - this['re']) <= Complex['EPSILON'] && Math.abs(z['im'] - this['im']) <= Complex['EPSILON']; }, /** * Clones the actual object * * @returns {Complex} */ 'clone': function () { return new Complex(this['re'], this['im']); }, /** * Gets a string of the actual complex number * * @returns {string} */ 'toString': function () { let a = this['re']; let b = this['im']; let ret = ""; if (this['isNaN']()) { return 'NaN'; } if (this['isInfinite']()) { return 'Infinity'; } if (Math.abs(a) < Complex['EPSILON']) { a = 0; } if (Math.abs(b) < Complex['EPSILON']) { b = 0; } // If is real number if (b === 0) { return ret + a; } if (a !== 0) { ret += a; ret += " "; if (b < 0) { b = -b; ret += "-"; } else { ret += "+"; } ret += " "; } else if (b < 0) { b = -b; ret += "-"; } if (1 !== b) { // b is the absolute imaginary part ret += b; } return ret + "i"; }, /** * Returns the actual number as a vector * * @returns {Array} */ 'toVector': function () { return [this['re'], this['im']]; }, /** * Returns the actual real value of the current object * * @returns {number|null} */ 'valueOf': function () { if (this['im'] === 0) { return this['re']; } return null; }, /** * Determines whether a complex number is not on the Riemann sphere. * * @returns {boolean} */ 'isNaN': function () { return isNaN(this['re']) || isNaN(this['im']); }, /** * Determines whether or not a complex number is at the zero pole of the * Riemann sphere. * * @returns {boolean} */ 'isZero': function () { return this['im'] === 0 && this['re'] === 0; }, /** * Determines whether a complex number is not at the infinity pole of the * Riemann sphere. * * @returns {boolean} */ 'isFinite': function () { return isFinite(this['re']) && isFinite(this['im']); }, /** * Determines whether or not a complex number is at the infinity pole of the * Riemann sphere. * * @returns {boolean} */ 'isInfinite': function () { return !this['isFinite'](); } }; Complex['ZERO'] = new Complex(0, 0); Complex['ONE'] = new Complex(1, 0); Complex['I'] = new Complex(0, 1); Complex['PI'] = new Complex(Math.PI, 0); Complex['E'] = new Complex(Math.E, 0); Complex['INFINITY'] = new Complex(Infinity, Infinity); Complex['NAN'] = new Complex(NaN, NaN); Complex['EPSILON'] = 1e-15; export { Complex as default, Complex };