"use strict";

Object.defineProperty(exports, "__esModule", {
  value: true
});
exports.createStd = void 0;
var _factory = require("../../utils/factory.js");
var _is = require("../../utils/is.js");
const name = 'std';
const dependencies = ['typed', 'map', 'sqrt', 'variance'];
const createStd = exports.createStd = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
  let {
    typed,
    map,
    sqrt,
    variance
  } = _ref;
  /**
   * Compute the standard deviation of a matrix or a  list with values.
   * The standard deviations is defined as the square root of the variance:
   * `std(A) = sqrt(variance(A))`.
   * In case of a (multi dimensional) array or matrix, the standard deviation
   * over all elements will be calculated by default, unless an axis is specified
   * in which case the standard deviation will be computed along that axis.
   *
   * Additionally, it is possible to compute the standard deviation along the rows
   * or columns of a matrix by specifying the dimension as the second argument.
   *
   * Optionally, the type of normalization can be specified as the final
   * parameter. The parameter `normalization` can be one of the following values:
   *
   * - 'unbiased' (default) The sum of squared errors is divided by (n - 1)
   * - 'uncorrected'        The sum of squared errors is divided by n
   * - 'biased'             The sum of squared errors is divided by (n + 1)
   *
   *
   * Syntax:
   *
   *     math.std(a, b, c, ...)
   *     math.std(A)
   *     math.std(A, normalization)
   *     math.std(A, dimension)
   *     math.std(A, dimension, normalization)
   *
   * Examples:
   *
   *     math.std(2, 4, 6)                     // returns 2
   *     math.std([2, 4, 6, 8])                // returns 2.581988897471611
   *     math.std([2, 4, 6, 8], 'uncorrected') // returns 2.23606797749979
   *     math.std([2, 4, 6, 8], 'biased')      // returns 2
   *
   *     math.std([[1, 2, 3], [4, 5, 6]])      // returns 1.8708286933869707
   *     math.std([[1, 2, 3], [4, 6, 8]], 0)    // returns [2.1213203435596424, 2.8284271247461903, 3.5355339059327378]
   *     math.std([[1, 2, 3], [4, 6, 8]], 1)    // returns [1, 2]
   *     math.std([[1, 2, 3], [4, 6, 8]], 1, 'biased') // returns [0.7071067811865476, 1.4142135623730951]
   *
   * See also:
   *
   *    mean, median, max, min, prod, sum, variance
   *
   * @param {Array | Matrix} array
   *                        A single matrix or or multiple scalar values
   * @param {string} [normalization='unbiased']
   *                        Determines how to normalize the variance.
   *                        Choose 'unbiased' (default), 'uncorrected', or 'biased'.
   * @param dimension {number | BigNumber}
   *                        Determines the axis to compute the standard deviation for a matrix
   * @return {*} The standard deviation
   */
  return typed(name, {
    // std([a, b, c, d, ...])
    'Array | Matrix': _std,
    // std([a, b, c, d, ...], normalization)
    'Array | Matrix, string': _std,
    // std([a, b, c, c, ...], dim)
    'Array | Matrix, number | BigNumber': _std,
    // std([a, b, c, c, ...], dim, normalization)
    'Array | Matrix, number | BigNumber, string': _std,
    // std(a, b, c, d, ...)
    '...': function (args) {
      return _std(args);
    }
  });
  function _std(array, normalization) {
    if (array.length === 0) {
      throw new SyntaxError('Function std requires one or more parameters (0 provided)');
    }
    try {
      const v = variance.apply(null, arguments);
      if ((0, _is.isCollection)(v)) {
        return map(v, sqrt);
      } else {
        return sqrt(v);
      }
    } catch (err) {
      if (err instanceof TypeError && err.message.includes(' variance')) {
        throw new TypeError(err.message.replace(' variance', ' std'));
      } else {
        throw err;
      }
    }
  }
});