/* eslint-disable no-loss-of-precision */ import { isInteger } from '../../utils/number.js'; import { product } from '../../utils/product.js'; export function gammaNumber(n) { var x; if (isInteger(n)) { if (n <= 0) { return isFinite(n) ? Infinity : NaN; } if (n > 171) { return Infinity; // Will overflow } return product(1, n - 1); } if (n < 0.5) { return Math.PI / (Math.sin(Math.PI * n) * gammaNumber(1 - n)); } if (n >= 171.35) { return Infinity; // will overflow } if (n > 85.0) { // Extended Stirling Approx var twoN = n * n; var threeN = twoN * n; var fourN = threeN * n; var fiveN = fourN * n; return Math.sqrt(2 * Math.PI / n) * Math.pow(n / Math.E, n) * (1 + 1 / (12 * n) + 1 / (288 * twoN) - 139 / (51840 * threeN) - 571 / (2488320 * fourN) + 163879 / (209018880 * fiveN) + 5246819 / (75246796800 * fiveN * n)); } --n; x = gammaP[0]; for (var i = 1; i < gammaP.length; ++i) { x += gammaP[i] / (n + i); } var t = n + gammaG + 0.5; return Math.sqrt(2 * Math.PI) * Math.pow(t, n + 0.5) * Math.exp(-t) * x; } gammaNumber.signature = 'number'; // TODO: comment on the variables g and p export var gammaG = 4.7421875; export var gammaP = [0.99999999999999709182, 57.156235665862923517, -59.597960355475491248, 14.136097974741747174, -0.49191381609762019978, 0.33994649984811888699e-4, 0.46523628927048575665e-4, -0.98374475304879564677e-4, 0.15808870322491248884e-3, -0.21026444172410488319e-3, 0.21743961811521264320e-3, -0.16431810653676389022e-3, 0.84418223983852743293e-4, -0.26190838401581408670e-4, 0.36899182659531622704e-5]; // lgamma implementation ref: https://mrob.com/pub/ries/lanczos-gamma.html#code // log(2 * pi) / 2 export var lnSqrt2PI = 0.91893853320467274178; export var lgammaG = 5; // Lanczos parameter "g" export var lgammaN = 7; // Range of coefficients "n" export var lgammaSeries = [1.000000000190015, 76.18009172947146, -86.50532032941677, 24.01409824083091, -1.231739572450155, 0.1208650973866179e-2, -0.5395239384953e-5]; export function lgammaNumber(n) { if (n < 0) return NaN; if (n === 0) return Infinity; if (!isFinite(n)) return n; if (n < 0.5) { // Use Euler's reflection formula: // gamma(z) = PI / (sin(PI * z) * gamma(1 - z)) return Math.log(Math.PI / Math.sin(Math.PI * n)) - lgammaNumber(1 - n); } // Compute the logarithm of the Gamma function using the Lanczos method n = n - 1; var base = n + lgammaG + 0.5; // Base of the Lanczos exponential var sum = lgammaSeries[0]; // We start with the terms that have the smallest coefficients and largest denominator for (var i = lgammaN - 1; i >= 1; i--) { sum += lgammaSeries[i] / (n + i); } return lnSqrt2PI + (n + 0.5) * Math.log(base) - base + Math.log(sum); } lgammaNumber.signature = 'number';