'use strict';

/**
 *
 * This class allows the manipulation of complex numbers.
 * You can pass a complex number in different formats. Either as object, double, string or two integer parameters.
 *
 * Object form
 * { re: <real>, im: <imaginary> }
 * { arg: <angle>, abs: <radius> }
 * { phi: <angle>, r: <radius> }
 *
 * Array / Vector form
 * [ real, imaginary ]
 *
 * Double form
 * 99.3 - Single double value
 *
 * String form
 * '23.1337' - Simple real number
 * '15+3i' - a simple complex number
 * '3-i' - a simple complex number
 *
 * Example:
 *
 * const c = new Complex('99.3+8i');
 * c.mul({r: 3, i: 9}).div(4.9).sub(3, 2);
 *
 */


const cosh = Math.cosh || function (x) {
  return Math.abs(x) < 1e-9 ? 1 - x : (Math.exp(x) + Math.exp(-x)) * 0.5;
};

const sinh = Math.sinh || function (x) {
  return Math.abs(x) < 1e-9 ? x : (Math.exp(x) - Math.exp(-x)) * 0.5;
};

/**
 * Calculates cos(x) - 1 using Taylor series if x is small (-¼π ≤ x ≤ ¼π).
 *
 * @param {number} x
 * @returns {number} cos(x) - 1
 */
const cosm1 = function (x) {

  const b = Math.PI / 4;
  if (-b > x || x > b) {
    return Math.cos(x) - 1.0;
  }

  /* Calculate horner form of polynomial of taylor series in Q
  let fac = 1, alt = 1, pol = {};
  for (let i = 0; i <= 16; i++) {
    fac*= i || 1;
    if (i % 2 == 0) {
      pol[i] = new Fraction(1, alt * fac);
      alt = -alt;
    }
  }
  console.log(new Polynomial(pol).toHorner()); // (((((((1/20922789888000x^2-1/87178291200)x^2+1/479001600)x^2-1/3628800)x^2+1/40320)x^2-1/720)x^2+1/24)x^2-1/2)x^2+1
  */

  const xx = x * x;
  return xx * (
    xx * (
      xx * (
        xx * (
          xx * (
            xx * (
              xx * (
                xx / 20922789888000
                - 1 / 87178291200)
              + 1 / 479001600)
            - 1 / 3628800)
          + 1 / 40320)
        - 1 / 720)
      + 1 / 24)
    - 1 / 2);
};

const hypot = function (x, y) {

  x = Math.abs(x);
  y = Math.abs(y);

  // Ensure `x` is the larger value
  if (x < y) [x, y] = [y, x];

  // If both are below the threshold, use straightforward Pythagoras
  if (x < 1e8) return Math.sqrt(x * x + y * y);

  // For larger values, scale to avoid overflow
  y /= x;
  return x * Math.sqrt(1 + y * y);
};

const parser_exit = function () {
  throw SyntaxError('Invalid Param');
};

/**
 * Calculates log(sqrt(a^2+b^2)) in a way to avoid overflows
 *
 * @param {number} a
 * @param {number} b
 * @returns {number}
 */
function logHypot(a, b) {

  const _a = Math.abs(a);
  const _b = Math.abs(b);

  if (a === 0) {
    return Math.log(_b);
  }

  if (b === 0) {
    return Math.log(_a);
  }

  if (_a < 3000 && _b < 3000) {
    return Math.log(a * a + b * b) * 0.5;
  }

  /* I got 4 ideas to compute this property without overflow:
   *
   * Testing 1000000 times with random samples for a,b ∈ [1, 1000000000] against a big decimal library to get an error estimate
   *
   * 1. Only eliminate the square root: (OVERALL ERROR: 3.9122483030951116e-11)

   Math.log(a * a + b * b) / 2

   *
   *
   * 2. Try to use the non-overflowing pythagoras: (OVERALL ERROR: 8.889760039210159e-10)

   const fn = function(a, b) {
   a = Math.abs(a);
   b = Math.abs(b);
   let t = Math.min(a, b);
   a = Math.max(a, b);
   t = t / a;

   return Math.log(a) + Math.log(1 + t * t) / 2;
   };

   * 3. Abuse the identity cos(atan(y/x) = x / sqrt(x^2+y^2): (OVERALL ERROR: 3.4780178737037204e-10)

   Math.log(a / Math.cos(Math.atan2(b, a)))

   * 4. Use 3. and apply log rules: (OVERALL ERROR: 1.2014087502620896e-9)

   Math.log(a) - Math.log(Math.cos(Math.atan2(b, a)))

   */

  a = a * 0.5;
  b = b * 0.5;

  return 0.5 * Math.log(a * a + b * b) + Math.LN2;
}

const P = { 're': 0, 'im': 0 };
const parse = function (a, b) {

  const z = P;

  if (a === undefined || a === null) {
    z['re'] =
      z['im'] = 0;
  } else if (b !== undefined) {
    z['re'] = a;
    z['im'] = b;
  } else
    switch (typeof a) {

      case 'object':

        if ('im' in a && 're' in a) {
          z['re'] = a['re'];
          z['im'] = a['im'];
        } else if ('abs' in a && 'arg' in a) {
          if (!isFinite(a['abs']) && isFinite(a['arg'])) {
            return Complex['INFINITY'];
          }
          z['re'] = a['abs'] * Math.cos(a['arg']);
          z['im'] = a['abs'] * Math.sin(a['arg']);
        } else if ('r' in a && 'phi' in a) {
          if (!isFinite(a['r']) && isFinite(a['phi'])) {
            return Complex['INFINITY'];
          }
          z['re'] = a['r'] * Math.cos(a['phi']);
          z['im'] = a['r'] * Math.sin(a['phi']);
        } else if (a.length === 2) { // Quick array check
          z['re'] = a[0];
          z['im'] = a[1];
        } else {
          parser_exit();
        }
        break;

      case 'string':

        z['im'] = /* void */
        z['re'] = 0;

        const tokens = a.replace(/_/g, '')
          .match(/\d+\.?\d*e[+-]?\d+|\d+\.?\d*|\.\d+|./g);
        let plus = 1;
        let minus = 0;

        if (tokens === null) {
          parser_exit();
        }

        for (let i = 0; i < tokens.length; i++) {

          const c = tokens[i];

          if (c === ' ' || c === '\t' || c === '\n') {
            /* void */
          } else if (c === '+') {
            plus++;
          } else if (c === '-') {
            minus++;
          } else if (c === 'i' || c === 'I') {

            if (plus + minus === 0) {
              parser_exit();
            }

            if (tokens[i + 1] !== ' ' && !isNaN(tokens[i + 1])) {
              z['im'] += parseFloat((minus % 2 ? '-' : '') + tokens[i + 1]);
              i++;
            } else {
              z['im'] += parseFloat((minus % 2 ? '-' : '') + '1');
            }
            plus = minus = 0;

          } else {

            if (plus + minus === 0 || isNaN(c)) {
              parser_exit();
            }

            if (tokens[i + 1] === 'i' || tokens[i + 1] === 'I') {
              z['im'] += parseFloat((minus % 2 ? '-' : '') + c);
              i++;
            } else {
              z['re'] += parseFloat((minus % 2 ? '-' : '') + c);
            }
            plus = minus = 0;
          }
        }

        // Still something on the stack
        if (plus + minus > 0) {
          parser_exit();
        }
        break;

      case 'number':
        z['im'] = 0;
        z['re'] = a;
        break;

      default:
        parser_exit();
    }

  if (isNaN(z['re']) || isNaN(z['im'])) {
    // If a calculation is NaN, we treat it as NaN and don't throw
    //parser_exit();
  }

  return z;
};

/**
 * @constructor
 * @returns {Complex}
 */
function Complex(a, b) {

  if (!(this instanceof Complex)) {
    return new Complex(a, b);
  }

  const z = parse(a, b);

  this['re'] = z['re'];
  this['im'] = z['im'];
}

Complex.prototype = {

  're': 0,
  'im': 0,

  /**
   * Calculates the sign of a complex number, which is a normalized complex
   *
   * @returns {Complex}
   */
  'sign': function () {

    const abs = hypot(this['re'], this['im']);

    return new Complex(
      this['re'] / abs,
      this['im'] / abs);
  },

  /**
   * Adds two complex numbers
   *
   * @returns {Complex}
   */
  'add': function (a, b) {

    const z = parse(a, b);

    const tInfin = this['isInfinite']();
    const zInfin = !(isFinite(z['re']) && isFinite(z['im']));

    if (tInfin || zInfin) {

      if (tInfin && zInfin) {
        // Infinity + Infinity = NaN
        return Complex['NAN'];
      }
      // Infinity + z = Infinity { where z != Infinity }
      return Complex['INFINITY'];
    }

    return new Complex(
      this['re'] + z['re'],
      this['im'] + z['im']);
  },

  /**
   * Subtracts two complex numbers
   *
   * @returns {Complex}
   */
  'sub': function (a, b) {

    const z = parse(a, b);

    const tInfin = this['isInfinite']();
    const zInfin = !(isFinite(z['re']) && isFinite(z['im']));

    if (tInfin || zInfin) {

      if (tInfin && zInfin) {
        // Infinity - Infinity = NaN
        return Complex['NAN'];
      }
      // Infinity - z = Infinity { where z != Infinity }
      return Complex['INFINITY'];
    }

    return new Complex(
      this['re'] - z['re'],
      this['im'] - z['im']);
  },

  /**
   * Multiplies two complex numbers
   *
   * @returns {Complex}
   */
  'mul': function (a, b) {

    const z = parse(a, b);

    const tInfin = this['isInfinite']();
    const zInfin = !(isFinite(z['re']) && isFinite(z['im']));
    const tIsZero = this['re'] === 0 && this['im'] === 0;
    const zIsZero = z['re'] === 0 && z['im'] === 0;

    // Infinity * 0 = NaN
    if (tInfin && zIsZero || zInfin && tIsZero) {
      return Complex['NAN'];
    }

    // Infinity * z = Infinity { where z != 0 }
    if (tInfin || zInfin) {
      return Complex['INFINITY'];
    }

    // Shortcut for real values
    if (z['im'] === 0 && this['im'] === 0) {
      return new Complex(this['re'] * z['re'], 0);
    }

    return new Complex(
      this['re'] * z['re'] - this['im'] * z['im'],
      this['re'] * z['im'] + this['im'] * z['re']);
  },

  /**
   * Divides two complex numbers
   *
   * @returns {Complex}
   */
  'div': function (a, b) {

    const z = parse(a, b);

    const tInfin = this['isInfinite']();
    const zInfin = !(isFinite(z['re']) && isFinite(z['im']));
    const tIsZero = this['re'] === 0 && this['im'] === 0;
    const zIsZero = z['re'] === 0 && z['im'] === 0;

    // 0 / 0 = NaN and Infinity / Infinity = NaN
    if (tIsZero && zIsZero || tInfin && zInfin) {
      return Complex['NAN'];
    }

    // Infinity / 0 = Infinity
    if (zIsZero || tInfin) {
      return Complex['INFINITY'];
    }

    // 0 / Infinity = 0
    if (tIsZero || zInfin) {
      return Complex['ZERO'];
    }

    if (0 === z['im']) {
      // Divisor is real
      return new Complex(this['re'] / z['re'], this['im'] / z['re']);
    }

    if (Math.abs(z['re']) < Math.abs(z['im'])) {

      const x = z['re'] / z['im'];
      const t = z['re'] * x + z['im'];

      return new Complex(
        (this['re'] * x + this['im']) / t,
        (this['im'] * x - this['re']) / t);

    } else {

      const x = z['im'] / z['re'];
      const t = z['im'] * x + z['re'];

      return new Complex(
        (this['re'] + this['im'] * x) / t,
        (this['im'] - this['re'] * x) / t);
    }
  },

  /**
   * Calculate the power of two complex numbers
   *
   * @returns {Complex}
   */
  'pow': function (a, b) {

    const z = parse(a, b);

    const tIsZero = this['re'] === 0 && this['im'] === 0;
    const zIsZero = z['re'] === 0 && z['im'] === 0;

    if (zIsZero) {
      return Complex['ONE'];
    }

    // If the exponent is real
    if (z['im'] === 0) {

      if (this['im'] === 0 && this['re'] > 0) {

        return new Complex(Math.pow(this['re'], z['re']), 0);

      } else if (this['re'] === 0) { // If base is fully imaginary

        switch ((z['re'] % 4 + 4) % 4) {
          case 0:
            return new Complex(Math.pow(this['im'], z['re']), 0);
          case 1:
            return new Complex(0, Math.pow(this['im'], z['re']));
          case 2:
            return new Complex(-Math.pow(this['im'], z['re']), 0);
          case 3:
            return new Complex(0, -Math.pow(this['im'], z['re']));
        }
      }
    }

    /* I couldn't find a good formula, so here is a derivation and optimization
     *
     * z_1^z_2 = (a + bi)^(c + di)
     *         = exp((c + di) * log(a + bi)
     *         = pow(a^2 + b^2, (c + di) / 2) * exp(i(c + di)atan2(b, a))
     * =>...
     * Re = (pow(a^2 + b^2, c / 2) * exp(-d * atan2(b, a))) * cos(d * log(a^2 + b^2) / 2 + c * atan2(b, a))
     * Im = (pow(a^2 + b^2, c / 2) * exp(-d * atan2(b, a))) * sin(d * log(a^2 + b^2) / 2 + c * atan2(b, a))
     *
     * =>...
     * Re = exp(c * log(sqrt(a^2 + b^2)) - d * atan2(b, a)) * cos(d * log(sqrt(a^2 + b^2)) + c * atan2(b, a))
     * Im = exp(c * log(sqrt(a^2 + b^2)) - d * atan2(b, a)) * sin(d * log(sqrt(a^2 + b^2)) + c * atan2(b, a))
     *
     * =>
     * Re = exp(c * logsq2 - d * arg(z_1)) * cos(d * logsq2 + c * arg(z_1))
     * Im = exp(c * logsq2 - d * arg(z_1)) * sin(d * logsq2 + c * arg(z_1))
     *
     */

    if (tIsZero && z['re'] > 0) { // Same behavior as Wolframalpha, Zero if real part is zero
      return Complex['ZERO'];
    }

    const arg = Math.atan2(this['im'], this['re']);
    const loh = logHypot(this['re'], this['im']);

    let re = Math.exp(z['re'] * loh - z['im'] * arg);
    let im = z['im'] * loh + z['re'] * arg;
    return new Complex(
      re * Math.cos(im),
      re * Math.sin(im));
  },

  /**
   * Calculate the complex square root
   *
   * @returns {Complex}
   */
  'sqrt': function () {

    const a = this['re'];
    const b = this['im'];

    if (b === 0) {
      // Real number case
      if (a >= 0) {
        return new Complex(Math.sqrt(a), 0);
      } else {
        return new Complex(0, Math.sqrt(-a));
      }
    }

    const r = hypot(a, b);

    let re = Math.sqrt(0.5 * (r + Math.abs(a))); // sqrt(2x) / 2 = sqrt(x / 2)
    let im = Math.abs(b) / (2 * re);

    if (a >= 0) {
      return new Complex(re, b < 0 ? -im : im);
    } else {
      return new Complex(im, b < 0 ? -re : re);
    }
  },

  /**
   * Calculate the complex exponent
   *
   * @returns {Complex}
   */
  'exp': function () {

    const er = Math.exp(this['re']);

    if (this['im'] === 0) {
      return new Complex(er, 0);
    }
    return new Complex(
      er * Math.cos(this['im']),
      er * Math.sin(this['im']));
  },

  /**
   * Calculate the complex exponent and subtracts one.
   *
   * This may be more accurate than `Complex(x).exp().sub(1)` if
   * `x` is small.
   *
   * @returns {Complex}
   */
  'expm1': function () {

    /**
     * exp(a + i*b) - 1
     = exp(a) * (cos(b) + j*sin(b)) - 1
     = expm1(a)*cos(b) + cosm1(b) + j*exp(a)*sin(b)
     */

    const a = this['re'];
    const b = this['im'];

    return new Complex(
      Math.expm1(a) * Math.cos(b) + cosm1(b),
      Math.exp(a) * Math.sin(b));
  },

  /**
   * Calculate the natural log
   *
   * @returns {Complex}
   */
  'log': function () {

    const a = this['re'];
    const b = this['im'];

    if (b === 0 && a > 0) {
      return new Complex(Math.log(a), 0);
    }

    return new Complex(
      logHypot(a, b),
      Math.atan2(b, a));
  },

  /**
   * Calculate the magnitude of the complex number
   *
   * @returns {number}
   */
  'abs': function () {

    return hypot(this['re'], this['im']);
  },

  /**
   * Calculate the angle of the complex number
   *
   * @returns {number}
   */
  'arg': function () {

    return Math.atan2(this['im'], this['re']);
  },

  /**
   * Calculate the sine of the complex number
   *
   * @returns {Complex}
   */
  'sin': function () {

    // sin(z) = ( e^iz - e^-iz ) / 2i 
    //        = sin(a)cosh(b) + i cos(a)sinh(b)

    const a = this['re'];
    const b = this['im'];

    return new Complex(
      Math.sin(a) * cosh(b),
      Math.cos(a) * sinh(b));
  },

  /**
   * Calculate the cosine
   *
   * @returns {Complex}
   */
  'cos': function () {

    // cos(z) = ( e^iz + e^-iz ) / 2 
    //        = cos(a)cosh(b) - i sin(a)sinh(b)

    const a = this['re'];
    const b = this['im'];

    return new Complex(
      Math.cos(a) * cosh(b),
      -Math.sin(a) * sinh(b));
  },

  /**
   * Calculate the tangent
   *
   * @returns {Complex}
   */
  'tan': function () {

    // tan(z) = sin(z) / cos(z) 
    //        = ( e^iz - e^-iz ) / ( i( e^iz + e^-iz ) )
    //        = ( e^2iz - 1 ) / i( e^2iz + 1 )
    //        = ( sin(2a) + i sinh(2b) ) / ( cos(2a) + cosh(2b) )

    const a = 2 * this['re'];
    const b = 2 * this['im'];
    const d = Math.cos(a) + cosh(b);

    return new Complex(
      Math.sin(a) / d,
      sinh(b) / d);
  },

  /**
   * Calculate the cotangent
   *
   * @returns {Complex}
   */
  'cot': function () {

    // cot(c) = i(e^(ci) + e^(-ci)) / (e^(ci) - e^(-ci))

    const a = 2 * this['re'];
    const b = 2 * this['im'];
    const d = Math.cos(a) - cosh(b);

    return new Complex(
      -Math.sin(a) / d,
      sinh(b) / d);
  },

  /**
   * Calculate the secant
   *
   * @returns {Complex}
   */
  'sec': function () {

    // sec(c) = 2 / (e^(ci) + e^(-ci))

    const a = this['re'];
    const b = this['im'];
    const d = 0.5 * cosh(2 * b) + 0.5 * Math.cos(2 * a);

    return new Complex(
      Math.cos(a) * cosh(b) / d,
      Math.sin(a) * sinh(b) / d);
  },

  /**
   * Calculate the cosecans
   *
   * @returns {Complex}
   */
  'csc': function () {

    // csc(c) = 2i / (e^(ci) - e^(-ci))

    const a = this['re'];
    const b = this['im'];
    const d = 0.5 * cosh(2 * b) - 0.5 * Math.cos(2 * a);

    return new Complex(
      Math.sin(a) * cosh(b) / d,
      -Math.cos(a) * sinh(b) / d);
  },

  /**
   * Calculate the complex arcus sinus
   *
   * @returns {Complex}
   */
  'asin': function () {

    // asin(c) = -i * log(ci + sqrt(1 - c^2))

    const a = this['re'];
    const b = this['im'];

    const t1 = new Complex(
      b * b - a * a + 1,
      -2 * a * b)['sqrt']();

    const t2 = new Complex(
      t1['re'] - b,
      t1['im'] + a)['log']();

    return new Complex(t2['im'], -t2['re']);
  },

  /**
   * Calculate the complex arcus cosinus
   *
   * @returns {Complex}
   */
  'acos': function () {

    // acos(c) = i * log(c - i * sqrt(1 - c^2))

    const a = this['re'];
    const b = this['im'];

    const t1 = new Complex(
      b * b - a * a + 1,
      -2 * a * b)['sqrt']();

    const t2 = new Complex(
      t1['re'] - b,
      t1['im'] + a)['log']();

    return new Complex(Math.PI / 2 - t2['im'], t2['re']);
  },

  /**
   * Calculate the complex arcus tangent
   *
   * @returns {Complex}
   */
  'atan': function () {

    // atan(c) = i / 2 log((i + x) / (i - x))

    const a = this['re'];
    const b = this['im'];

    if (a === 0) {

      if (b === 1) {
        return new Complex(0, Infinity);
      }

      if (b === -1) {
        return new Complex(0, -Infinity);
      }
    }

    const d = a * a + (1.0 - b) * (1.0 - b);

    const t1 = new Complex(
      (1 - b * b - a * a) / d,
      -2 * a / d).log();

    return new Complex(-0.5 * t1['im'], 0.5 * t1['re']);
  },

  /**
   * Calculate the complex arcus cotangent
   *
   * @returns {Complex}
   */
  'acot': function () {

    // acot(c) = i / 2 log((c - i) / (c + i))

    const a = this['re'];
    const b = this['im'];

    if (b === 0) {
      return new Complex(Math.atan2(1, a), 0);
    }

    const d = a * a + b * b;
    return (d !== 0)
      ? new Complex(
        a / d,
        -b / d).atan()
      : new Complex(
        (a !== 0) ? a / 0 : 0,
        (b !== 0) ? -b / 0 : 0).atan();
  },

  /**
   * Calculate the complex arcus secant
   *
   * @returns {Complex}
   */
  'asec': function () {

    // asec(c) = -i * log(1 / c + sqrt(1 - i / c^2))

    const a = this['re'];
    const b = this['im'];

    if (a === 0 && b === 0) {
      return new Complex(0, Infinity);
    }

    const d = a * a + b * b;
    return (d !== 0)
      ? new Complex(
        a / d,
        -b / d).acos()
      : new Complex(
        (a !== 0) ? a / 0 : 0,
        (b !== 0) ? -b / 0 : 0).acos();
  },

  /**
   * Calculate the complex arcus cosecans
   *
   * @returns {Complex}
   */
  'acsc': function () {

    // acsc(c) = -i * log(i / c + sqrt(1 - 1 / c^2))

    const a = this['re'];
    const b = this['im'];

    if (a === 0 && b === 0) {
      return new Complex(Math.PI / 2, Infinity);
    }

    const d = a * a + b * b;
    return (d !== 0)
      ? new Complex(
        a / d,
        -b / d).asin()
      : new Complex(
        (a !== 0) ? a / 0 : 0,
        (b !== 0) ? -b / 0 : 0).asin();
  },

  /**
   * Calculate the complex sinh
   *
   * @returns {Complex}
   */
  'sinh': function () {

    // sinh(c) = (e^c - e^-c) / 2

    const a = this['re'];
    const b = this['im'];

    return new Complex(
      sinh(a) * Math.cos(b),
      cosh(a) * Math.sin(b));
  },

  /**
   * Calculate the complex cosh
   *
   * @returns {Complex}
   */
  'cosh': function () {

    // cosh(c) = (e^c + e^-c) / 2

    const a = this['re'];
    const b = this['im'];

    return new Complex(
      cosh(a) * Math.cos(b),
      sinh(a) * Math.sin(b));
  },

  /**
   * Calculate the complex tanh
   *
   * @returns {Complex}
   */
  'tanh': function () {

    // tanh(c) = (e^c - e^-c) / (e^c + e^-c)

    const a = 2 * this['re'];
    const b = 2 * this['im'];
    const d = cosh(a) + Math.cos(b);

    return new Complex(
      sinh(a) / d,
      Math.sin(b) / d);
  },

  /**
   * Calculate the complex coth
   *
   * @returns {Complex}
   */
  'coth': function () {

    // coth(c) = (e^c + e^-c) / (e^c - e^-c)

    const a = 2 * this['re'];
    const b = 2 * this['im'];
    const d = cosh(a) - Math.cos(b);

    return new Complex(
      sinh(a) / d,
      -Math.sin(b) / d);
  },

  /**
   * Calculate the complex coth
   *
   * @returns {Complex}
   */
  'csch': function () {

    // csch(c) = 2 / (e^c - e^-c)

    const a = this['re'];
    const b = this['im'];
    const d = Math.cos(2 * b) - cosh(2 * a);

    return new Complex(
      -2 * sinh(a) * Math.cos(b) / d,
      2 * cosh(a) * Math.sin(b) / d);
  },

  /**
   * Calculate the complex sech
   *
   * @returns {Complex}
   */
  'sech': function () {

    // sech(c) = 2 / (e^c + e^-c)

    const a = this['re'];
    const b = this['im'];
    const d = Math.cos(2 * b) + cosh(2 * a);

    return new Complex(
      2 * cosh(a) * Math.cos(b) / d,
      -2 * sinh(a) * Math.sin(b) / d);
  },

  /**
   * Calculate the complex asinh
   *
   * @returns {Complex}
   */
  'asinh': function () {

    // asinh(c) = log(c + sqrt(c^2 + 1))

    let tmp = this['im'];
    this['im'] = -this['re'];
    this['re'] = tmp;
    const res = this['asin']();

    this['re'] = -this['im'];
    this['im'] = tmp;
    tmp = res['re'];

    res['re'] = -res['im'];
    res['im'] = tmp;
    return res;
  },

  /**
   * Calculate the complex acosh
   *
   * @returns {Complex}
   */
  'acosh': function () {

    // acosh(c) = log(c + sqrt(c^2 - 1))

    const res = this['acos']();
    if (res['im'] <= 0) {
      const tmp = res['re'];
      res['re'] = -res['im'];
      res['im'] = tmp;
    } else {
      const tmp = res['im'];
      res['im'] = -res['re'];
      res['re'] = tmp;
    }
    return res;
  },

  /**
   * Calculate the complex atanh
   *
   * @returns {Complex}
   */
  'atanh': function () {

    // atanh(c) = log((1+c) / (1-c)) / 2

    const a = this['re'];
    const b = this['im'];

    const noIM = a > 1 && b === 0;
    const oneMinus = 1 - a;
    const onePlus = 1 + a;
    const d = oneMinus * oneMinus + b * b;

    const x = (d !== 0)
      ? new Complex(
        (onePlus * oneMinus - b * b) / d,
        (b * oneMinus + onePlus * b) / d)
      : new Complex(
        (a !== -1) ? (a / 0) : 0,
        (b !== 0) ? (b / 0) : 0);

    const temp = x['re'];
    x['re'] = logHypot(x['re'], x['im']) / 2;
    x['im'] = Math.atan2(x['im'], temp) / 2;
    if (noIM) {
      x['im'] = -x['im'];
    }
    return x;
  },

  /**
   * Calculate the complex acoth
   *
   * @returns {Complex}
   */
  'acoth': function () {

    // acoth(c) = log((c+1) / (c-1)) / 2

    const a = this['re'];
    const b = this['im'];

    if (a === 0 && b === 0) {
      return new Complex(0, Math.PI / 2);
    }

    const d = a * a + b * b;
    return (d !== 0)
      ? new Complex(
        a / d,
        -b / d).atanh()
      : new Complex(
        (a !== 0) ? a / 0 : 0,
        (b !== 0) ? -b / 0 : 0).atanh();
  },

  /**
   * Calculate the complex acsch
   *
   * @returns {Complex}
   */
  'acsch': function () {

    // acsch(c) = log((1+sqrt(1+c^2))/c)

    const a = this['re'];
    const b = this['im'];

    if (b === 0) {

      return new Complex(
        (a !== 0)
          ? Math.log(a + Math.sqrt(a * a + 1))
          : Infinity, 0);
    }

    const d = a * a + b * b;
    return (d !== 0)
      ? new Complex(
        a / d,
        -b / d).asinh()
      : new Complex(
        (a !== 0) ? a / 0 : 0,
        (b !== 0) ? -b / 0 : 0).asinh();
  },

  /**
   * Calculate the complex asech
   *
   * @returns {Complex}
   */
  'asech': function () {

    // asech(c) = log((1+sqrt(1-c^2))/c)

    const a = this['re'];
    const b = this['im'];

    if (this['isZero']()) {
      return Complex['INFINITY'];
    }

    const d = a * a + b * b;
    return (d !== 0)
      ? new Complex(
        a / d,
        -b / d).acosh()
      : new Complex(
        (a !== 0) ? a / 0 : 0,
        (b !== 0) ? -b / 0 : 0).acosh();
  },

  /**
   * Calculate the complex inverse 1/z
   *
   * @returns {Complex}
   */
  'inverse': function () {

    // 1 / 0 = Infinity and 1 / Infinity = 0
    if (this['isZero']()) {
      return Complex['INFINITY'];
    }

    if (this['isInfinite']()) {
      return Complex['ZERO'];
    }

    const a = this['re'];
    const b = this['im'];

    const d = a * a + b * b;

    return new Complex(a / d, -b / d);
  },

  /**
   * Returns the complex conjugate
   *
   * @returns {Complex}
   */
  'conjugate': function () {

    return new Complex(this['re'], -this['im']);
  },

  /**
   * Gets the negated complex number
   *
   * @returns {Complex}
   */
  'neg': function () {

    return new Complex(-this['re'], -this['im']);
  },

  /**
   * Ceils the actual complex number
   *
   * @returns {Complex}
   */
  'ceil': function (places) {

    places = Math.pow(10, places || 0);

    return new Complex(
      Math.ceil(this['re'] * places) / places,
      Math.ceil(this['im'] * places) / places);
  },

  /**
   * Floors the actual complex number
   *
   * @returns {Complex}
   */
  'floor': function (places) {

    places = Math.pow(10, places || 0);

    return new Complex(
      Math.floor(this['re'] * places) / places,
      Math.floor(this['im'] * places) / places);
  },

  /**
   * Ceils the actual complex number
   *
   * @returns {Complex}
   */
  'round': function (places) {

    places = Math.pow(10, places || 0);

    return new Complex(
      Math.round(this['re'] * places) / places,
      Math.round(this['im'] * places) / places);
  },

  /**
   * Compares two complex numbers
   *
   * **Note:** new Complex(Infinity).equals(Infinity) === false
   *
   * @returns {boolean}
   */
  'equals': function (a, b) {

    const z = parse(a, b);

    return Math.abs(z['re'] - this['re']) <= Complex['EPSILON'] &&
      Math.abs(z['im'] - this['im']) <= Complex['EPSILON'];
  },

  /**
   * Clones the actual object
   *
   * @returns {Complex}
   */
  'clone': function () {

    return new Complex(this['re'], this['im']);
  },

  /**
   * Gets a string of the actual complex number
   *
   * @returns {string}
   */
  'toString': function () {

    let a = this['re'];
    let b = this['im'];
    let ret = "";

    if (this['isNaN']()) {
      return 'NaN';
    }

    if (this['isInfinite']()) {
      return 'Infinity';
    }

    if (Math.abs(a) < Complex['EPSILON']) {
      a = 0;
    }

    if (Math.abs(b) < Complex['EPSILON']) {
      b = 0;
    }

    // If is real number
    if (b === 0) {
      return ret + a;
    }

    if (a !== 0) {
      ret += a;
      ret += " ";
      if (b < 0) {
        b = -b;
        ret += "-";
      } else {
        ret += "+";
      }
      ret += " ";
    } else if (b < 0) {
      b = -b;
      ret += "-";
    }

    if (1 !== b) { // b is the absolute imaginary part
      ret += b;
    }
    return ret + "i";
  },

  /**
   * Returns the actual number as a vector
   *
   * @returns {Array}
   */
  'toVector': function () {

    return [this['re'], this['im']];
  },

  /**
   * Returns the actual real value of the current object
   *
   * @returns {number|null}
   */
  'valueOf': function () {

    if (this['im'] === 0) {
      return this['re'];
    }
    return null;
  },

  /**
   * Determines whether a complex number is not on the Riemann sphere.
   *
   * @returns {boolean}
   */
  'isNaN': function () {
    return isNaN(this['re']) || isNaN(this['im']);
  },

  /**
   * Determines whether or not a complex number is at the zero pole of the
   * Riemann sphere.
   *
   * @returns {boolean}
   */
  'isZero': function () {
    return this['im'] === 0 && this['re'] === 0;
  },

  /**
   * Determines whether a complex number is not at the infinity pole of the
   * Riemann sphere.
   *
   * @returns {boolean}
   */
  'isFinite': function () {
    return isFinite(this['re']) && isFinite(this['im']);
  },

  /**
   * Determines whether or not a complex number is at the infinity pole of the
   * Riemann sphere.
   *
   * @returns {boolean}
   */
  'isInfinite': function () {
    return !this['isFinite']();
  }
};

Complex['ZERO'] = new Complex(0, 0);
Complex['ONE'] = new Complex(1, 0);
Complex['I'] = new Complex(0, 1);
Complex['PI'] = new Complex(Math.PI, 0);
Complex['E'] = new Complex(Math.E, 0);
Complex['INFINITY'] = new Complex(Infinity, Infinity);
Complex['NAN'] = new Complex(NaN, NaN);
Complex['EPSILON'] = 1e-15;
export {
  Complex as default, Complex
};