jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/cjs/function/utils/isPrime.js

136 lines
4.2 KiB
JavaScript
Raw Normal View History

2025-01-02 03:13:50 +00:00
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createIsPrime = void 0;
var _collection = require("../../utils/collection.js");
var _factory = require("../../utils/factory.js");
const name = 'isPrime';
const dependencies = ['typed'];
const createIsPrime = exports.createIsPrime = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
typed
} = _ref;
/**
* Test whether a value is prime: has no divisors other than itself and one.
* The function supports type `number`, `bignumber`.
*
* The function is evaluated element-wise in case of Array or Matrix input.
*
* Syntax:
*
* math.isPrime(x)
*
* Examples:
*
* math.isPrime(3) // returns true
* math.isPrime(-2) // returns false
* math.isPrime(0) // returns false
* math.isPrime(-0) // returns false
* math.isPrime(0.5) // returns false
* math.isPrime('2') // returns true
* math.isPrime([2, 17, 100]) // returns [true, true, false]
*
* See also:
*
* isNumeric, isZero, isNegative, isInteger
*
* @param {number | BigNumber | bigint | Array | Matrix} x Value to be tested
* @return {boolean} Returns true when `x` is larger than zero.
* Throws an error in case of an unknown data type.
*/
return typed(name, {
number: function (x) {
if (x <= 3) {
return x > 1;
}
if (x % 2 === 0 || x % 3 === 0) {
return false;
}
for (let i = 5; i * i <= x; i += 6) {
if (x % i === 0 || x % (i + 2) === 0) {
return false;
}
}
return true;
},
bigint: function (x) {
if (x <= 3n) {
return x > 1n;
}
if (x % 2n === 0n || x % 3n === 0n) {
return false;
}
for (let i = 5n; i * i <= x; i += 6n) {
if (x % i === 0n || x % (i + 2n) === 0n) {
return false;
}
}
return true;
},
BigNumber: function (n) {
if (n.lte(3)) return n.gt(1);
if (n.mod(2).eq(0) || n.mod(3).eq(0)) return false;
if (n.lt(Math.pow(2, 32))) {
const x = n.toNumber();
for (let i = 5; i * i <= x; i += 6) {
if (x % i === 0 || x % (i + 2) === 0) {
return false;
}
}
return true;
}
function modPow(base, exponent, modulus) {
// exponent can be huge, use non-recursive variant
let accumulator = 1;
while (!exponent.eq(0)) {
if (exponent.mod(2).eq(0)) {
exponent = exponent.div(2);
base = base.mul(base).mod(modulus);
} else {
exponent = exponent.sub(1);
accumulator = base.mul(accumulator).mod(modulus);
}
}
return accumulator;
}
// https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test#Deterministic_variants
const Decimal = n.constructor.clone({
precision: n.toFixed(0).length * 2
});
n = new Decimal(n);
let r = 0;
let d = n.sub(1);
while (d.mod(2).eq(0)) {
d = d.div(2);
r += 1;
}
let bases = null;
// https://en.wikipedia.org/wiki/MillerRabin_primality_test#Testing_against_small_sets_of_bases
if (n.lt('3317044064679887385961981')) {
bases = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41].filter(x => x < n);
} else {
const max = Math.min(n.toNumber() - 2, Math.floor(2 * Math.pow(n.toFixed(0).length * Math.log(10), 2)));
bases = [];
for (let i = 2; i <= max; i += 1) {
bases.push(max);
}
}
for (let i = 0; i < bases.length; i += 1) {
const a = bases[i];
const adn = modPow(n.sub(n).add(a), d, n);
if (!adn.eq(1)) {
for (let i = 0, x = adn; !x.eq(n.sub(1)); i += 1, x = x.mul(x).mod(n)) {
if (i === r - 1) {
return false;
}
}
}
}
return true;
},
'Array | Matrix': typed.referToSelf(self => x => (0, _collection.deepMap)(x, self))
});
});