303 lines
7.9 KiB
JavaScript
303 lines
7.9 KiB
JavaScript
|
"use strict";
|
||
|
|
||
|
Object.defineProperty(exports, "__esModule", {
|
||
|
value: true
|
||
|
});
|
||
|
exports.createRealSymmetric = createRealSymmetric;
|
||
|
var _object = require("../../../utils/object.js");
|
||
|
function createRealSymmetric(_ref) {
|
||
|
let {
|
||
|
config,
|
||
|
addScalar,
|
||
|
subtract,
|
||
|
abs,
|
||
|
atan,
|
||
|
cos,
|
||
|
sin,
|
||
|
multiplyScalar,
|
||
|
inv,
|
||
|
bignumber,
|
||
|
multiply,
|
||
|
add
|
||
|
} = _ref;
|
||
|
/**
|
||
|
* @param {number[] | BigNumber[]} arr
|
||
|
* @param {number} N
|
||
|
* @param {number} prec
|
||
|
* @param {'number' | 'BigNumber'} type
|
||
|
*/
|
||
|
function main(arr, N) {
|
||
|
let prec = arguments.length > 2 && arguments[2] !== undefined ? arguments[2] : config.relTol;
|
||
|
let type = arguments.length > 3 ? arguments[3] : undefined;
|
||
|
let computeVectors = arguments.length > 4 ? arguments[4] : undefined;
|
||
|
if (type === 'number') {
|
||
|
return diag(arr, prec, computeVectors);
|
||
|
}
|
||
|
if (type === 'BigNumber') {
|
||
|
return diagBig(arr, prec, computeVectors);
|
||
|
}
|
||
|
throw TypeError('Unsupported data type: ' + type);
|
||
|
}
|
||
|
|
||
|
// diagonalization implementation for number (efficient)
|
||
|
function diag(x, precision, computeVectors) {
|
||
|
const N = x.length;
|
||
|
const e0 = Math.abs(precision / N);
|
||
|
let psi;
|
||
|
let Sij;
|
||
|
if (computeVectors) {
|
||
|
Sij = new Array(N);
|
||
|
// Sij is Identity Matrix
|
||
|
for (let i = 0; i < N; i++) {
|
||
|
Sij[i] = Array(N).fill(0);
|
||
|
Sij[i][i] = 1.0;
|
||
|
}
|
||
|
}
|
||
|
// initial error
|
||
|
let Vab = getAij(x);
|
||
|
while (Math.abs(Vab[1]) >= Math.abs(e0)) {
|
||
|
const i = Vab[0][0];
|
||
|
const j = Vab[0][1];
|
||
|
psi = getTheta(x[i][i], x[j][j], x[i][j]);
|
||
|
x = x1(x, psi, i, j);
|
||
|
if (computeVectors) Sij = Sij1(Sij, psi, i, j);
|
||
|
Vab = getAij(x);
|
||
|
}
|
||
|
const Ei = Array(N).fill(0); // eigenvalues
|
||
|
for (let i = 0; i < N; i++) {
|
||
|
Ei[i] = x[i][i];
|
||
|
}
|
||
|
return sorting((0, _object.clone)(Ei), Sij, computeVectors);
|
||
|
}
|
||
|
|
||
|
// diagonalization implementation for bigNumber
|
||
|
function diagBig(x, precision, computeVectors) {
|
||
|
const N = x.length;
|
||
|
const e0 = abs(precision / N);
|
||
|
let psi;
|
||
|
let Sij;
|
||
|
if (computeVectors) {
|
||
|
Sij = new Array(N);
|
||
|
// Sij is Identity Matrix
|
||
|
for (let i = 0; i < N; i++) {
|
||
|
Sij[i] = Array(N).fill(0);
|
||
|
Sij[i][i] = 1.0;
|
||
|
}
|
||
|
}
|
||
|
// initial error
|
||
|
let Vab = getAijBig(x);
|
||
|
while (abs(Vab[1]) >= abs(e0)) {
|
||
|
const i = Vab[0][0];
|
||
|
const j = Vab[0][1];
|
||
|
psi = getThetaBig(x[i][i], x[j][j], x[i][j]);
|
||
|
x = x1Big(x, psi, i, j);
|
||
|
if (computeVectors) Sij = Sij1Big(Sij, psi, i, j);
|
||
|
Vab = getAijBig(x);
|
||
|
}
|
||
|
const Ei = Array(N).fill(0); // eigenvalues
|
||
|
for (let i = 0; i < N; i++) {
|
||
|
Ei[i] = x[i][i];
|
||
|
}
|
||
|
// return [clone(Ei), clone(Sij)]
|
||
|
return sorting((0, _object.clone)(Ei), Sij, computeVectors);
|
||
|
}
|
||
|
|
||
|
// get angle
|
||
|
function getTheta(aii, ajj, aij) {
|
||
|
const denom = ajj - aii;
|
||
|
if (Math.abs(denom) <= config.relTol) {
|
||
|
return Math.PI / 4.0;
|
||
|
} else {
|
||
|
return 0.5 * Math.atan(2.0 * aij / (ajj - aii));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// get angle
|
||
|
function getThetaBig(aii, ajj, aij) {
|
||
|
const denom = subtract(ajj, aii);
|
||
|
if (abs(denom) <= config.relTol) {
|
||
|
return bignumber(-1).acos().div(4);
|
||
|
} else {
|
||
|
return multiplyScalar(0.5, atan(multiply(2.0, aij, inv(denom))));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// update eigvec
|
||
|
function Sij1(Sij, theta, i, j) {
|
||
|
const N = Sij.length;
|
||
|
const c = Math.cos(theta);
|
||
|
const s = Math.sin(theta);
|
||
|
const Ski = Array(N).fill(0);
|
||
|
const Skj = Array(N).fill(0);
|
||
|
for (let k = 0; k < N; k++) {
|
||
|
Ski[k] = c * Sij[k][i] - s * Sij[k][j];
|
||
|
Skj[k] = s * Sij[k][i] + c * Sij[k][j];
|
||
|
}
|
||
|
for (let k = 0; k < N; k++) {
|
||
|
Sij[k][i] = Ski[k];
|
||
|
Sij[k][j] = Skj[k];
|
||
|
}
|
||
|
return Sij;
|
||
|
}
|
||
|
// update eigvec for overlap
|
||
|
function Sij1Big(Sij, theta, i, j) {
|
||
|
const N = Sij.length;
|
||
|
const c = cos(theta);
|
||
|
const s = sin(theta);
|
||
|
const Ski = Array(N).fill(bignumber(0));
|
||
|
const Skj = Array(N).fill(bignumber(0));
|
||
|
for (let k = 0; k < N; k++) {
|
||
|
Ski[k] = subtract(multiplyScalar(c, Sij[k][i]), multiplyScalar(s, Sij[k][j]));
|
||
|
Skj[k] = addScalar(multiplyScalar(s, Sij[k][i]), multiplyScalar(c, Sij[k][j]));
|
||
|
}
|
||
|
for (let k = 0; k < N; k++) {
|
||
|
Sij[k][i] = Ski[k];
|
||
|
Sij[k][j] = Skj[k];
|
||
|
}
|
||
|
return Sij;
|
||
|
}
|
||
|
|
||
|
// update matrix
|
||
|
function x1Big(Hij, theta, i, j) {
|
||
|
const N = Hij.length;
|
||
|
const c = bignumber(cos(theta));
|
||
|
const s = bignumber(sin(theta));
|
||
|
const c2 = multiplyScalar(c, c);
|
||
|
const s2 = multiplyScalar(s, s);
|
||
|
const Aki = Array(N).fill(bignumber(0));
|
||
|
const Akj = Array(N).fill(bignumber(0));
|
||
|
// 2cs Hij
|
||
|
const csHij = multiply(bignumber(2), c, s, Hij[i][j]);
|
||
|
// Aii
|
||
|
const Aii = addScalar(subtract(multiplyScalar(c2, Hij[i][i]), csHij), multiplyScalar(s2, Hij[j][j]));
|
||
|
const Ajj = add(multiplyScalar(s2, Hij[i][i]), csHij, multiplyScalar(c2, Hij[j][j]));
|
||
|
// 0 to i
|
||
|
for (let k = 0; k < N; k++) {
|
||
|
Aki[k] = subtract(multiplyScalar(c, Hij[i][k]), multiplyScalar(s, Hij[j][k]));
|
||
|
Akj[k] = addScalar(multiplyScalar(s, Hij[i][k]), multiplyScalar(c, Hij[j][k]));
|
||
|
}
|
||
|
// Modify Hij
|
||
|
Hij[i][i] = Aii;
|
||
|
Hij[j][j] = Ajj;
|
||
|
Hij[i][j] = bignumber(0);
|
||
|
Hij[j][i] = bignumber(0);
|
||
|
// 0 to i
|
||
|
for (let k = 0; k < N; k++) {
|
||
|
if (k !== i && k !== j) {
|
||
|
Hij[i][k] = Aki[k];
|
||
|
Hij[k][i] = Aki[k];
|
||
|
Hij[j][k] = Akj[k];
|
||
|
Hij[k][j] = Akj[k];
|
||
|
}
|
||
|
}
|
||
|
return Hij;
|
||
|
}
|
||
|
|
||
|
// update matrix
|
||
|
function x1(Hij, theta, i, j) {
|
||
|
const N = Hij.length;
|
||
|
const c = Math.cos(theta);
|
||
|
const s = Math.sin(theta);
|
||
|
const c2 = c * c;
|
||
|
const s2 = s * s;
|
||
|
const Aki = Array(N).fill(0);
|
||
|
const Akj = Array(N).fill(0);
|
||
|
// Aii
|
||
|
const Aii = c2 * Hij[i][i] - 2 * c * s * Hij[i][j] + s2 * Hij[j][j];
|
||
|
const Ajj = s2 * Hij[i][i] + 2 * c * s * Hij[i][j] + c2 * Hij[j][j];
|
||
|
// 0 to i
|
||
|
for (let k = 0; k < N; k++) {
|
||
|
Aki[k] = c * Hij[i][k] - s * Hij[j][k];
|
||
|
Akj[k] = s * Hij[i][k] + c * Hij[j][k];
|
||
|
}
|
||
|
// Modify Hij
|
||
|
Hij[i][i] = Aii;
|
||
|
Hij[j][j] = Ajj;
|
||
|
Hij[i][j] = 0;
|
||
|
Hij[j][i] = 0;
|
||
|
// 0 to i
|
||
|
for (let k = 0; k < N; k++) {
|
||
|
if (k !== i && k !== j) {
|
||
|
Hij[i][k] = Aki[k];
|
||
|
Hij[k][i] = Aki[k];
|
||
|
Hij[j][k] = Akj[k];
|
||
|
Hij[k][j] = Akj[k];
|
||
|
}
|
||
|
}
|
||
|
return Hij;
|
||
|
}
|
||
|
|
||
|
// get max off-diagonal value from Upper Diagonal
|
||
|
function getAij(Mij) {
|
||
|
const N = Mij.length;
|
||
|
let maxMij = 0;
|
||
|
let maxIJ = [0, 1];
|
||
|
for (let i = 0; i < N; i++) {
|
||
|
for (let j = i + 1; j < N; j++) {
|
||
|
if (Math.abs(maxMij) < Math.abs(Mij[i][j])) {
|
||
|
maxMij = Math.abs(Mij[i][j]);
|
||
|
maxIJ = [i, j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return [maxIJ, maxMij];
|
||
|
}
|
||
|
|
||
|
// get max off-diagonal value from Upper Diagonal
|
||
|
function getAijBig(Mij) {
|
||
|
const N = Mij.length;
|
||
|
let maxMij = 0;
|
||
|
let maxIJ = [0, 1];
|
||
|
for (let i = 0; i < N; i++) {
|
||
|
for (let j = i + 1; j < N; j++) {
|
||
|
if (abs(maxMij) < abs(Mij[i][j])) {
|
||
|
maxMij = abs(Mij[i][j]);
|
||
|
maxIJ = [i, j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return [maxIJ, maxMij];
|
||
|
}
|
||
|
|
||
|
// sort results
|
||
|
function sorting(E, S, computeVectors) {
|
||
|
const N = E.length;
|
||
|
const values = Array(N);
|
||
|
let vecs;
|
||
|
if (computeVectors) {
|
||
|
vecs = Array(N);
|
||
|
for (let k = 0; k < N; k++) {
|
||
|
vecs[k] = Array(N);
|
||
|
}
|
||
|
}
|
||
|
for (let i = 0; i < N; i++) {
|
||
|
let minID = 0;
|
||
|
let minE = E[0];
|
||
|
for (let j = 0; j < E.length; j++) {
|
||
|
if (abs(E[j]) < abs(minE)) {
|
||
|
minID = j;
|
||
|
minE = E[minID];
|
||
|
}
|
||
|
}
|
||
|
values[i] = E.splice(minID, 1)[0];
|
||
|
if (computeVectors) {
|
||
|
for (let k = 0; k < N; k++) {
|
||
|
vecs[i][k] = S[k][minID];
|
||
|
S[k].splice(minID, 1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (!computeVectors) return {
|
||
|
values
|
||
|
};
|
||
|
const eigenvectors = vecs.map((vector, i) => ({
|
||
|
value: values[i],
|
||
|
vector
|
||
|
}));
|
||
|
return {
|
||
|
values,
|
||
|
eigenvectors
|
||
|
};
|
||
|
}
|
||
|
return main;
|
||
|
}
|