jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/cjs/function/matrix/eigs/complexEigs.js

701 lines
21 KiB
JavaScript
Raw Normal View History

2025-01-02 03:13:50 +00:00
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createComplexEigs = createComplexEigs;
var _object = require("../../../utils/object.js");
function createComplexEigs(_ref) {
let {
addScalar,
subtract,
flatten,
multiply,
multiplyScalar,
divideScalar,
sqrt,
abs,
bignumber,
diag,
size,
reshape,
inv,
qr,
usolve,
usolveAll,
equal,
complex,
larger,
smaller,
matrixFromColumns,
dot
} = _ref;
/**
* @param {number[][]} arr the matrix to find eigenvalues of
* @param {number} N size of the matrix
* @param {number|BigNumber} prec precision, anything lower will be considered zero
* @param {'number'|'BigNumber'|'Complex'} type
* @param {boolean} findVectors should we find eigenvectors?
*
* @returns {{ values: number[], vectors: number[][] }}
*/
function complexEigs(arr, N, prec, type) {
let findVectors = arguments.length > 4 && arguments[4] !== undefined ? arguments[4] : true;
// TODO check if any row/col are zero except the diagonal
// make sure corresponding rows and columns have similar magnitude
// important because of numerical stability
// MODIFIES arr by side effect!
const R = balance(arr, N, prec, type, findVectors);
// R is the row transformation matrix
// arr = A' = R A R^-1, A is the original matrix
// (if findVectors is false, R is undefined)
// (And so to return to original matrix: A = R^-1 arr R)
// TODO if magnitudes of elements vary over many orders,
// move greatest elements to the top left corner
// using similarity transformations, reduce the matrix
// to Hessenberg form (upper triangular plus one subdiagonal row)
// updates the transformation matrix R with new row operationsq
// MODIFIES arr by side effect!
reduceToHessenberg(arr, N, prec, type, findVectors, R);
// still true that original A = R^-1 arr R)
// find eigenvalues
const {
values,
C
} = iterateUntilTriangular(arr, N, prec, type, findVectors);
// values is the list of eigenvalues, C is the column
// transformation matrix that transforms arr, the hessenberg
// matrix, to upper triangular
// (So U = C^-1 arr C and the relationship between current arr
// and original A is unchanged.)
if (findVectors) {
const eigenvectors = findEigenvectors(arr, N, C, R, values, prec, type);
return {
values,
eigenvectors
};
}
return {
values
};
}
/**
* @param {number[][]} arr
* @param {number} N
* @param {number} prec
* @param {'number'|'BigNumber'|'Complex'} type
* @returns {number[][]}
*/
function balance(arr, N, prec, type, findVectors) {
const big = type === 'BigNumber';
const cplx = type === 'Complex';
const realzero = big ? bignumber(0) : 0;
const one = big ? bignumber(1) : cplx ? complex(1) : 1;
const realone = big ? bignumber(1) : 1;
// base of the floating-point arithmetic
const radix = big ? bignumber(10) : 2;
const radixSq = multiplyScalar(radix, radix);
// the diagonal transformation matrix R
let Rdiag;
if (findVectors) {
Rdiag = Array(N).fill(one);
}
// this isn't the only time we loop thru the matrix...
let last = false;
while (!last) {
// ...haha I'm joking! unless...
last = true;
for (let i = 0; i < N; i++) {
// compute the taxicab norm of i-th column and row
// TODO optimize for complex numbers
let colNorm = realzero;
let rowNorm = realzero;
for (let j = 0; j < N; j++) {
if (i === j) continue;
colNorm = addScalar(colNorm, abs(arr[j][i]));
rowNorm = addScalar(rowNorm, abs(arr[i][j]));
}
if (!equal(colNorm, 0) && !equal(rowNorm, 0)) {
// find integer power closest to balancing the matrix
// (we want to scale only by integer powers of radix,
// so that we don't lose any precision due to round-off)
let f = realone;
let c = colNorm;
const rowDivRadix = divideScalar(rowNorm, radix);
const rowMulRadix = multiplyScalar(rowNorm, radix);
while (smaller(c, rowDivRadix)) {
c = multiplyScalar(c, radixSq);
f = multiplyScalar(f, radix);
}
while (larger(c, rowMulRadix)) {
c = divideScalar(c, radixSq);
f = divideScalar(f, radix);
}
// check whether balancing is needed
// condition = (c + rowNorm) / f < 0.95 * (colNorm + rowNorm)
const condition = smaller(divideScalar(addScalar(c, rowNorm), f), multiplyScalar(addScalar(colNorm, rowNorm), 0.95));
// apply balancing similarity transformation
if (condition) {
// we should loop once again to check whether
// another rebalancing is needed
last = false;
const g = divideScalar(1, f);
for (let j = 0; j < N; j++) {
if (i === j) {
continue;
}
arr[i][j] = multiplyScalar(arr[i][j], g);
arr[j][i] = multiplyScalar(arr[j][i], f);
}
// keep track of transformations
if (findVectors) {
Rdiag[i] = multiplyScalar(Rdiag[i], g);
}
}
}
}
}
// return the diagonal row transformation matrix
return findVectors ? diag(Rdiag) : null;
}
/**
* @param {number[][]} arr
* @param {number} N
* @param {number} prec
* @param {'number'|'BigNumber'|'Complex'} type
* @param {boolean} findVectors
* @param {number[][]} R the row transformation matrix that will be modified
*/
function reduceToHessenberg(arr, N, prec, type, findVectors, R) {
const big = type === 'BigNumber';
const cplx = type === 'Complex';
const zero = big ? bignumber(0) : cplx ? complex(0) : 0;
if (big) {
prec = bignumber(prec);
}
for (let i = 0; i < N - 2; i++) {
// Find the largest subdiag element in the i-th col
let maxIndex = 0;
let max = zero;
for (let j = i + 1; j < N; j++) {
const el = arr[j][i];
if (smaller(abs(max), abs(el))) {
max = el;
maxIndex = j;
}
}
// This col is pivoted, no need to do anything
if (smaller(abs(max), prec)) {
continue;
}
if (maxIndex !== i + 1) {
// Interchange maxIndex-th and (i+1)-th row
const tmp1 = arr[maxIndex];
arr[maxIndex] = arr[i + 1];
arr[i + 1] = tmp1;
// Interchange maxIndex-th and (i+1)-th column
for (let j = 0; j < N; j++) {
const tmp2 = arr[j][maxIndex];
arr[j][maxIndex] = arr[j][i + 1];
arr[j][i + 1] = tmp2;
}
// keep track of transformations
if (findVectors) {
const tmp3 = R[maxIndex];
R[maxIndex] = R[i + 1];
R[i + 1] = tmp3;
}
}
// Reduce following rows and columns
for (let j = i + 2; j < N; j++) {
const n = divideScalar(arr[j][i], max);
if (n === 0) {
continue;
}
// from j-th row subtract n-times (i+1)th row
for (let k = 0; k < N; k++) {
arr[j][k] = subtract(arr[j][k], multiplyScalar(n, arr[i + 1][k]));
}
// to (i+1)th column add n-times j-th column
for (let k = 0; k < N; k++) {
arr[k][i + 1] = addScalar(arr[k][i + 1], multiplyScalar(n, arr[k][j]));
}
// keep track of transformations
if (findVectors) {
for (let k = 0; k < N; k++) {
R[j][k] = subtract(R[j][k], multiplyScalar(n, R[i + 1][k]));
}
}
}
}
return R;
}
/**
* @returns {{values: values, C: Matrix}}
* @see Press, Wiliams: Numerical recipes in Fortran 77
* @see https://en.wikipedia.org/wiki/QR_algorithm
*/
function iterateUntilTriangular(A, N, prec, type, findVectors) {
const big = type === 'BigNumber';
const cplx = type === 'Complex';
const one = big ? bignumber(1) : cplx ? complex(1) : 1;
if (big) {
prec = bignumber(prec);
}
// The Francis Algorithm
// The core idea of this algorithm is that doing successive
// A' = QtAQ transformations will eventually converge to block-
// upper-triangular with diagonal blocks either 1x1 or 2x2.
// The Q here is the one from the QR decomposition, A = QR.
// Since the eigenvalues of a block-upper-triangular matrix are
// the eigenvalues of its diagonal blocks and we know how to find
// eigenvalues of a 2x2 matrix, we know the eigenvalues of A.
let arr = (0, _object.clone)(A);
// the list of converged eigenvalues
const lambdas = [];
// size of arr, which will get smaller as eigenvalues converge
let n = N;
// the diagonal of the block-diagonal matrix that turns
// converged 2x2 matrices into upper triangular matrices
const Sdiag = [];
// N×N matrix describing the overall transformation done during the QR algorithm
let Qtotal = findVectors ? diag(Array(N).fill(one)) : undefined;
// nxn matrix describing the QR transformations done since last convergence
let Qpartial = findVectors ? diag(Array(n).fill(one)) : undefined;
// last eigenvalue converged before this many steps
let lastConvergenceBefore = 0;
while (lastConvergenceBefore <= 100) {
lastConvergenceBefore += 1;
// TODO if the convergence is slow, do something clever
// Perform the factorization
const k = arr[n - 1][n - 1]; // TODO this is apparently a somewhat
// old-fashioned choice; ideally set close to an eigenvalue, or
// perhaps better yet switch to the implicit QR version that is sometimes
// specifically called the "Francis algorithm" that is alluded to
// in the following TODO. (Or perhaps we switch to an independently
// optimized third-party package for the linear algebra operations...)
for (let i = 0; i < n; i++) {
arr[i][i] = subtract(arr[i][i], k);
}
// TODO do an implicit QR transformation
const {
Q,
R
} = qr(arr);
arr = multiply(R, Q);
for (let i = 0; i < n; i++) {
arr[i][i] = addScalar(arr[i][i], k);
}
// keep track of transformations
if (findVectors) {
Qpartial = multiply(Qpartial, Q);
}
// The rightmost diagonal element converged to an eigenvalue
if (n === 1 || smaller(abs(arr[n - 1][n - 2]), prec)) {
lastConvergenceBefore = 0;
lambdas.push(arr[n - 1][n - 1]);
// keep track of transformations
if (findVectors) {
Sdiag.unshift([[1]]);
inflateMatrix(Qpartial, N);
Qtotal = multiply(Qtotal, Qpartial);
if (n > 1) {
Qpartial = diag(Array(n - 1).fill(one));
}
}
// reduce the matrix size
n -= 1;
arr.pop();
for (let i = 0; i < n; i++) {
arr[i].pop();
}
// The rightmost diagonal 2x2 block converged
} else if (n === 2 || smaller(abs(arr[n - 2][n - 3]), prec)) {
lastConvergenceBefore = 0;
const ll = eigenvalues2x2(arr[n - 2][n - 2], arr[n - 2][n - 1], arr[n - 1][n - 2], arr[n - 1][n - 1]);
lambdas.push(...ll);
// keep track of transformations
if (findVectors) {
Sdiag.unshift(jordanBase2x2(arr[n - 2][n - 2], arr[n - 2][n - 1], arr[n - 1][n - 2], arr[n - 1][n - 1], ll[0], ll[1], prec, type));
inflateMatrix(Qpartial, N);
Qtotal = multiply(Qtotal, Qpartial);
if (n > 2) {
Qpartial = diag(Array(n - 2).fill(one));
}
}
// reduce the matrix size
n -= 2;
arr.pop();
arr.pop();
for (let i = 0; i < n; i++) {
arr[i].pop();
arr[i].pop();
}
}
if (n === 0) {
break;
}
}
// standard sorting
lambdas.sort((a, b) => +subtract(abs(a), abs(b)));
// the algorithm didn't converge
if (lastConvergenceBefore > 100) {
const err = Error('The eigenvalues failed to converge. Only found these eigenvalues: ' + lambdas.join(', '));
err.values = lambdas;
err.vectors = [];
throw err;
}
// combine the overall QR transformation Qtotal with the subsequent
// transformation S that turns the diagonal 2x2 blocks to upper triangular
const C = findVectors ? multiply(Qtotal, blockDiag(Sdiag, N)) : undefined;
return {
values: lambdas,
C
};
}
/**
* @param {Matrix} A hessenberg-form matrix
* @param {number} N size of A
* @param {Matrix} C column transformation matrix that turns A into upper triangular
* @param {Matrix} R similarity that turns original matrix into A
* @param {number[]} values array of eigenvalues of A
* @param {'number'|'BigNumber'|'Complex'} type
* @returns {number[][]} eigenvalues
*/
function findEigenvectors(A, N, C, R, values, prec, type) {
const Cinv = inv(C);
const U = multiply(Cinv, A, C);
const big = type === 'BigNumber';
const cplx = type === 'Complex';
const zero = big ? bignumber(0) : cplx ? complex(0) : 0;
const one = big ? bignumber(1) : cplx ? complex(1) : 1;
// turn values into a kind of "multiset"
// this way it is easier to find eigenvectors
const uniqueValues = [];
const multiplicities = [];
for (const lambda of values) {
const i = indexOf(uniqueValues, lambda, equal);
if (i === -1) {
uniqueValues.push(lambda);
multiplicities.push(1);
} else {
multiplicities[i] += 1;
}
}
// find eigenvectors by solving U lambdaE = 0
// TODO replace with an iterative eigenvector algorithm
// (this one might fail for imprecise eigenvalues)
const vectors = [];
const len = uniqueValues.length;
const b = Array(N).fill(zero);
const E = diag(Array(N).fill(one));
for (let i = 0; i < len; i++) {
const lambda = uniqueValues[i];
const S = subtract(U, multiply(lambda, E)); // the characteristic matrix
let solutions = usolveAll(S, b);
solutions.shift(); // ignore the null vector
// looks like we missed something, try inverse iteration
// But if that fails, just presume that the original matrix truly
// was defective.
while (solutions.length < multiplicities[i]) {
const approxVec = inverseIterate(S, N, solutions, prec, type);
if (approxVec === null) {
break;
} // no more vectors were found
solutions.push(approxVec);
}
// Transform back into original array coordinates
const correction = multiply(inv(R), C);
solutions = solutions.map(v => multiply(correction, v));
vectors.push(...solutions.map(v => ({
value: lambda,
vector: flatten(v)
})));
}
return vectors;
}
/**
* Compute the eigenvalues of an 2x2 matrix
* @return {[number,number]}
*/
function eigenvalues2x2(a, b, c, d) {
// lambda_+- = 1/2 trA +- 1/2 sqrt( tr^2 A - 4 detA )
const trA = addScalar(a, d);
const detA = subtract(multiplyScalar(a, d), multiplyScalar(b, c));
const x = multiplyScalar(trA, 0.5);
const y = multiplyScalar(sqrt(subtract(multiplyScalar(trA, trA), multiplyScalar(4, detA))), 0.5);
return [addScalar(x, y), subtract(x, y)];
}
/**
* For an 2x2 matrix compute the transformation matrix S,
* so that SAS^-1 is an upper triangular matrix
* @return {[[number,number],[number,number]]}
* @see https://math.berkeley.edu/~ogus/old/Math_54-05/webfoils/jordan.pdf
* @see http://people.math.harvard.edu/~knill/teaching/math21b2004/exhibits/2dmatrices/index.html
*/
function jordanBase2x2(a, b, c, d, l1, l2, prec, type) {
const big = type === 'BigNumber';
const cplx = type === 'Complex';
const zero = big ? bignumber(0) : cplx ? complex(0) : 0;
const one = big ? bignumber(1) : cplx ? complex(1) : 1;
// matrix is already upper triangular
// return an identity matrix
if (smaller(abs(c), prec)) {
return [[one, zero], [zero, one]];
}
// matrix is diagonalizable
// return its eigenvectors as columns
if (larger(abs(subtract(l1, l2)), prec)) {
return [[subtract(l1, d), subtract(l2, d)], [c, c]];
}
// matrix is not diagonalizable
// compute diagonal elements of N = A - lambdaI
const na = subtract(a, l1);
const nd = subtract(d, l1);
// col(N,2) = 0 implies S = ( col(N,1), e_1 )
// col(N,2) != 0 implies S = ( col(N,2), e_2 )
if (smaller(abs(b), prec) && smaller(abs(nd), prec)) {
return [[na, one], [c, zero]];
} else {
return [[b, zero], [nd, one]];
}
}
/**
* Enlarge the matrix from nxn to NxN, setting the new
* elements to 1 on diagonal and 0 elsewhere
*/
function inflateMatrix(arr, N) {
// add columns
for (let i = 0; i < arr.length; i++) {
arr[i].push(...Array(N - arr[i].length).fill(0));
}
// add rows
for (let i = arr.length; i < N; i++) {
arr.push(Array(N).fill(0));
arr[i][i] = 1;
}
return arr;
}
/**
* Create a block-diagonal matrix with the given square matrices on the diagonal
* @param {Matrix[] | number[][][]} arr array of matrices to be placed on the diagonal
* @param {number} N the size of the resulting matrix
*/
function blockDiag(arr, N) {
const M = [];
for (let i = 0; i < N; i++) {
M[i] = Array(N).fill(0);
}
let I = 0;
for (const sub of arr) {
const n = sub.length;
for (let i = 0; i < n; i++) {
for (let j = 0; j < n; j++) {
M[I + i][I + j] = sub[i][j];
}
}
I += n;
}
return M;
}
/**
* Finds the index of an element in an array using a custom equality function
* @template T
* @param {Array<T>} arr array in which to search
* @param {T} el the element to find
* @param {function(T, T): boolean} fn the equality function, first argument is an element of `arr`, the second is always `el`
* @returns {number} the index of `el`, or -1 when it's not in `arr`
*/
function indexOf(arr, el, fn) {
for (let i = 0; i < arr.length; i++) {
if (fn(arr[i], el)) {
return i;
}
}
return -1;
}
/**
* Provided a near-singular upper-triangular matrix A and a list of vectors,
* finds an eigenvector of A with the smallest eigenvalue, which is orthogonal
* to each vector in the list
* @template T
* @param {T[][]} A near-singular square matrix
* @param {number} N dimension
* @param {T[][]} orthog list of vectors
* @param {number} prec epsilon
* @param {'number'|'BigNumber'|'Complex'} type
* @return {T[] | null} eigenvector
*
* @see Numerical Recipes for Fortran 77 11.7 Eigenvalues or Eigenvectors by Inverse Iteration
*/
function inverseIterate(A, N, orthog, prec, type) {
const largeNum = type === 'BigNumber' ? bignumber(1000) : 1000;
let b; // the vector
// you better choose a random vector before I count to five
let i = 0;
for (; i < 5; ++i) {
b = randomOrthogonalVector(N, orthog, type);
try {
b = usolve(A, b);
} catch (_unused) {
// That direction didn't work, likely because the original matrix
// was defective. But still make the full number of tries...
continue;
}
if (larger(norm(b), largeNum)) {
break;
}
}
if (i >= 5) {
return null; // couldn't find any orthogonal vector in the image
}
// you better converge before I count to ten
i = 0;
while (true) {
const c = usolve(A, b);
if (smaller(norm(orthogonalComplement(b, [c])), prec)) {
break;
}
if (++i >= 10) {
return null;
}
b = normalize(c);
}
return b;
}
/**
* Generates a random unit vector of dimension N, orthogonal to each vector in the list
* @template T
* @param {number} N dimension
* @param {T[][]} orthog list of vectors
* @param {'number'|'BigNumber'|'Complex'} type
* @returns {T[]} random vector
*/
function randomOrthogonalVector(N, orthog, type) {
const big = type === 'BigNumber';
const cplx = type === 'Complex';
// generate random vector with the correct type
let v = Array(N).fill(0).map(_ => 2 * Math.random() - 1);
if (big) {
v = v.map(n => bignumber(n));
}
if (cplx) {
v = v.map(n => complex(n));
}
// project to orthogonal complement
v = orthogonalComplement(v, orthog);
// normalize
return normalize(v, type);
}
/**
* Project vector v to the orthogonal complement of an array of vectors
*/
function orthogonalComplement(v, orthog) {
const vectorShape = size(v);
for (let w of orthog) {
w = reshape(w, vectorShape); // make sure this is just a vector computation
// v := v (w, v)/|w|^2 w
v = subtract(v, multiply(divideScalar(dot(w, v), dot(w, w)), w));
}
return v;
}
/**
* Calculate the norm of a vector.
* We can't use math.norm because factory can't handle circular dependency.
* Seriously, I'm really fed up with factory.
*/
function norm(v) {
return abs(sqrt(dot(v, v)));
}
/**
* Normalize a vector
* @template T
* @param {T[]} v
* @param {'number'|'BigNumber'|'Complex'} type
* @returns {T[]} normalized vec
*/
function normalize(v, type) {
const big = type === 'BigNumber';
const cplx = type === 'Complex';
const one = big ? bignumber(1) : cplx ? complex(1) : 1;
return multiply(divideScalar(one, norm(v)), v);
}
return complexEigs;
}