100 lines
2.9 KiB
JavaScript
100 lines
2.9 KiB
JavaScript
|
"use strict";
|
||
|
|
||
|
Object.defineProperty(exports, "__esModule", {
|
||
|
value: true
|
||
|
});
|
||
|
exports.createCsSymperm = void 0;
|
||
|
var _csCumsum = require("./csCumsum.js");
|
||
|
var _factory = require("../../../utils/factory.js");
|
||
|
// Copyright (c) 2006-2024, Timothy A. Davis, All Rights Reserved.
|
||
|
// SPDX-License-Identifier: LGPL-2.1+
|
||
|
// https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/dev/CSparse/Source
|
||
|
|
||
|
const name = 'csSymperm';
|
||
|
const dependencies = ['conj', 'SparseMatrix'];
|
||
|
const createCsSymperm = exports.createCsSymperm = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
|
||
|
let {
|
||
|
conj,
|
||
|
SparseMatrix
|
||
|
} = _ref;
|
||
|
/**
|
||
|
* Computes the symmetric permutation of matrix A accessing only
|
||
|
* the upper triangular part of A.
|
||
|
*
|
||
|
* C = P * A * P'
|
||
|
*
|
||
|
* @param {Matrix} a The A matrix
|
||
|
* @param {Array} pinv The inverse of permutation vector
|
||
|
* @param {boolean} values Process matrix values (true)
|
||
|
*
|
||
|
* @return {Matrix} The C matrix, C = P * A * P'
|
||
|
*/
|
||
|
return function csSymperm(a, pinv, values) {
|
||
|
// A matrix arrays
|
||
|
const avalues = a._values;
|
||
|
const aindex = a._index;
|
||
|
const aptr = a._ptr;
|
||
|
const asize = a._size;
|
||
|
// columns
|
||
|
const n = asize[1];
|
||
|
// C matrix arrays
|
||
|
const cvalues = values && avalues ? [] : null;
|
||
|
const cindex = []; // (nz)
|
||
|
const cptr = []; // (n + 1)
|
||
|
// variables
|
||
|
let i, i2, j, j2, p, p0, p1;
|
||
|
// create workspace vector
|
||
|
const w = []; // (n)
|
||
|
// count entries in each column of C
|
||
|
for (j = 0; j < n; j++) {
|
||
|
// column j of A is column j2 of C
|
||
|
j2 = pinv ? pinv[j] : j;
|
||
|
// loop values in column j
|
||
|
for (p0 = aptr[j], p1 = aptr[j + 1], p = p0; p < p1; p++) {
|
||
|
// row
|
||
|
i = aindex[p];
|
||
|
// skip lower triangular part of A
|
||
|
if (i > j) {
|
||
|
continue;
|
||
|
}
|
||
|
// row i of A is row i2 of C
|
||
|
i2 = pinv ? pinv[i] : i;
|
||
|
// column count of C
|
||
|
w[Math.max(i2, j2)]++;
|
||
|
}
|
||
|
}
|
||
|
// compute column pointers of C
|
||
|
(0, _csCumsum.csCumsum)(cptr, w, n);
|
||
|
// loop columns
|
||
|
for (j = 0; j < n; j++) {
|
||
|
// column j of A is column j2 of C
|
||
|
j2 = pinv ? pinv[j] : j;
|
||
|
// loop values in column j
|
||
|
for (p0 = aptr[j], p1 = aptr[j + 1], p = p0; p < p1; p++) {
|
||
|
// row
|
||
|
i = aindex[p];
|
||
|
// skip lower triangular part of A
|
||
|
if (i > j) {
|
||
|
continue;
|
||
|
}
|
||
|
// row i of A is row i2 of C
|
||
|
i2 = pinv ? pinv[i] : i;
|
||
|
// C index for column j2
|
||
|
const q = w[Math.max(i2, j2)]++;
|
||
|
// update C index for entry q
|
||
|
cindex[q] = Math.min(i2, j2);
|
||
|
// check we need to process values
|
||
|
if (cvalues) {
|
||
|
cvalues[q] = i2 <= j2 ? avalues[p] : conj(avalues[p]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// return C matrix
|
||
|
return new SparseMatrix({
|
||
|
values: cvalues,
|
||
|
index: cindex,
|
||
|
ptr: cptr,
|
||
|
size: [n, n]
|
||
|
});
|
||
|
};
|
||
|
});
|