91 lines
3.1 KiB
JavaScript
91 lines
3.1 KiB
JavaScript
|
"use strict";
|
||
|
|
||
|
Object.defineProperty(exports, "__esModule", {
|
||
|
value: true
|
||
|
});
|
||
|
exports.createCsSpsolve = void 0;
|
||
|
var _csReach = require("./csReach.js");
|
||
|
var _factory = require("../../../utils/factory.js");
|
||
|
// Copyright (c) 2006-2024, Timothy A. Davis, All Rights Reserved.
|
||
|
// SPDX-License-Identifier: LGPL-2.1+
|
||
|
// https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/dev/CSparse/Source
|
||
|
|
||
|
const name = 'csSpsolve';
|
||
|
const dependencies = ['divideScalar', 'multiply', 'subtract'];
|
||
|
const createCsSpsolve = exports.createCsSpsolve = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
|
||
|
let {
|
||
|
divideScalar,
|
||
|
multiply,
|
||
|
subtract
|
||
|
} = _ref;
|
||
|
/**
|
||
|
* The function csSpsolve() computes the solution to G * x = bk, where bk is the
|
||
|
* kth column of B. When lo is true, the function assumes G = L is lower triangular with the
|
||
|
* diagonal entry as the first entry in each column. When lo is true, the function assumes G = U
|
||
|
* is upper triangular with the diagonal entry as the last entry in each column.
|
||
|
*
|
||
|
* @param {Matrix} g The G matrix
|
||
|
* @param {Matrix} b The B matrix
|
||
|
* @param {Number} k The kth column in B
|
||
|
* @param {Array} xi The nonzero pattern xi[top] .. xi[n - 1], an array of size = 2 * n
|
||
|
* The first n entries is the nonzero pattern, the last n entries is the stack
|
||
|
* @param {Array} x The soluton to the linear system G * x = b
|
||
|
* @param {Array} pinv The inverse row permutation vector, must be null for L * x = b
|
||
|
* @param {boolean} lo The lower (true) upper triangular (false) flag
|
||
|
*
|
||
|
* @return {Number} The index for the nonzero pattern
|
||
|
*/
|
||
|
return function csSpsolve(g, b, k, xi, x, pinv, lo) {
|
||
|
// g arrays
|
||
|
const gvalues = g._values;
|
||
|
const gindex = g._index;
|
||
|
const gptr = g._ptr;
|
||
|
const gsize = g._size;
|
||
|
// columns
|
||
|
const n = gsize[1];
|
||
|
// b arrays
|
||
|
const bvalues = b._values;
|
||
|
const bindex = b._index;
|
||
|
const bptr = b._ptr;
|
||
|
// vars
|
||
|
let p, p0, p1, q;
|
||
|
// xi[top..n-1] = csReach(B(:,k))
|
||
|
const top = (0, _csReach.csReach)(g, b, k, xi, pinv);
|
||
|
// clear x
|
||
|
for (p = top; p < n; p++) {
|
||
|
x[xi[p]] = 0;
|
||
|
}
|
||
|
// scatter b
|
||
|
for (p0 = bptr[k], p1 = bptr[k + 1], p = p0; p < p1; p++) {
|
||
|
x[bindex[p]] = bvalues[p];
|
||
|
}
|
||
|
// loop columns
|
||
|
for (let px = top; px < n; px++) {
|
||
|
// x array index for px
|
||
|
const j = xi[px];
|
||
|
// apply permutation vector (U x = b), j maps to column J of G
|
||
|
const J = pinv ? pinv[j] : j;
|
||
|
// check column J is empty
|
||
|
if (J < 0) {
|
||
|
continue;
|
||
|
}
|
||
|
// column value indeces in G, p0 <= p < p1
|
||
|
p0 = gptr[J];
|
||
|
p1 = gptr[J + 1];
|
||
|
// x(j) /= G(j,j)
|
||
|
x[j] = divideScalar(x[j], gvalues[lo ? p0 : p1 - 1]);
|
||
|
// first entry L(j,j)
|
||
|
p = lo ? p0 + 1 : p0;
|
||
|
q = lo ? p1 : p1 - 1;
|
||
|
// loop
|
||
|
for (; p < q; p++) {
|
||
|
// row
|
||
|
const i = gindex[p];
|
||
|
// x(i) -= G(i,j) * x(j)
|
||
|
x[i] = subtract(x[i], multiply(gvalues[p], x[j]));
|
||
|
}
|
||
|
}
|
||
|
// return top of stack
|
||
|
return top;
|
||
|
};
|
||
|
});
|