jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/cjs/function/algebra/sparse/csEtree.js

77 lines
1.8 KiB
JavaScript
Raw Normal View History

2025-01-02 03:13:50 +00:00
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.csEtree = csEtree;
// Copyright (c) 2006-2024, Timothy A. Davis, All Rights Reserved.
// SPDX-License-Identifier: LGPL-2.1+
// https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/dev/CSparse/Source
/**
* Computes the elimination tree of Matrix A (using triu(A)) or the
* elimination tree of A'A without forming A'A.
*
* @param {Matrix} a The A Matrix
* @param {boolean} ata A value of true the function computes the etree of A'A
*/
function csEtree(a, ata) {
// check inputs
if (!a) {
return null;
}
// a arrays
const aindex = a._index;
const aptr = a._ptr;
const asize = a._size;
// rows & columns
const m = asize[0];
const n = asize[1];
// allocate result
const parent = []; // (n)
// allocate workspace
const w = []; // (n + (ata ? m : 0))
const ancestor = 0; // first n entries in w
const prev = n; // last m entries (ata = true)
let i, inext;
// check we are calculating A'A
if (ata) {
// initialize workspace
for (i = 0; i < m; i++) {
w[prev + i] = -1;
}
}
// loop columns
for (let k = 0; k < n; k++) {
// node k has no parent yet
parent[k] = -1;
// nor does k have an ancestor
w[ancestor + k] = -1;
// values in column k
for (let p0 = aptr[k], p1 = aptr[k + 1], p = p0; p < p1; p++) {
// row
const r = aindex[p];
// node
i = ata ? w[prev + r] : r;
// traverse from i to k
for (; i !== -1 && i < k; i = inext) {
// inext = ancestor of i
inext = w[ancestor + i];
// path compression
w[ancestor + i] = k;
// check no anc., parent is k
if (inext === -1) {
parent[i] = k;
}
}
if (ata) {
w[prev + r] = k;
}
}
}
return parent;
}