jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/cjs/function/algebra/sparse/csChol.js

164 lines
4.2 KiB
JavaScript
Raw Normal View History

2025-01-02 03:13:50 +00:00
"use strict";
Object.defineProperty(exports, "__esModule", {
value: true
});
exports.createCsChol = void 0;
var _factory = require("../../../utils/factory.js");
var _csEreach = require("./csEreach.js");
var _csSymperm = require("./csSymperm.js");
// Copyright (c) 2006-2024, Timothy A. Davis, All Rights Reserved.
// SPDX-License-Identifier: LGPL-2.1+
// https://github.com/DrTimothyAldenDavis/SuiteSparse/tree/dev/CSparse/Source
const name = 'csChol';
const dependencies = ['divideScalar', 'sqrt', 'subtract', 'multiply', 'im', 're', 'conj', 'equal', 'smallerEq', 'SparseMatrix'];
const createCsChol = exports.createCsChol = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
let {
divideScalar,
sqrt,
subtract,
multiply,
im,
re,
conj,
equal,
smallerEq,
SparseMatrix
} = _ref;
const csSymperm = (0, _csSymperm.createCsSymperm)({
conj,
SparseMatrix
});
/**
* Computes the Cholesky factorization of matrix A. It computes L and P so
* L * L' = P * A * P'
*
* @param {Matrix} m The A Matrix to factorize, only upper triangular part used
* @param {Object} s The symbolic analysis from cs_schol()
*
* @return {Number} The numeric Cholesky factorization of A or null
*/
return function csChol(m, s) {
// validate input
if (!m) {
return null;
}
// m arrays
const size = m._size;
// columns
const n = size[1];
// symbolic analysis result
const parent = s.parent;
const cp = s.cp;
const pinv = s.pinv;
// L arrays
const lvalues = [];
const lindex = [];
const lptr = [];
// L
const L = new SparseMatrix({
values: lvalues,
index: lindex,
ptr: lptr,
size: [n, n]
});
// vars
const c = []; // (2 * n)
const x = []; // (n)
// compute C = P * A * P'
const cm = pinv ? csSymperm(m, pinv, 1) : m;
// C matrix arrays
const cvalues = cm._values;
const cindex = cm._index;
const cptr = cm._ptr;
// vars
let k, p;
// initialize variables
for (k = 0; k < n; k++) {
lptr[k] = c[k] = cp[k];
}
// compute L(k,:) for L*L' = C
for (k = 0; k < n; k++) {
// nonzero pattern of L(k,:)
let top = (0, _csEreach.csEreach)(cm, k, parent, c);
// x (0:k) is now zero
x[k] = 0;
// x = full(triu(C(:,k)))
for (p = cptr[k]; p < cptr[k + 1]; p++) {
if (cindex[p] <= k) {
x[cindex[p]] = cvalues[p];
}
}
// d = C(k,k)
let d = x[k];
// clear x for k+1st iteration
x[k] = 0;
// solve L(0:k-1,0:k-1) * x = C(:,k)
for (; top < n; top++) {
// s[top..n-1] is pattern of L(k,:)
const i = s[top];
// L(k,i) = x (i) / L(i,i)
const lki = divideScalar(x[i], lvalues[lptr[i]]);
// clear x for k+1st iteration
x[i] = 0;
for (p = lptr[i] + 1; p < c[i]; p++) {
// row
const r = lindex[p];
// update x[r]
x[r] = subtract(x[r], multiply(lvalues[p], lki));
}
// d = d - L(k,i)*L(k,i)
d = subtract(d, multiply(lki, conj(lki)));
p = c[i]++;
// store L(k,i) in column i
lindex[p] = k;
lvalues[p] = conj(lki);
}
// compute L(k,k)
if (smallerEq(re(d), 0) || !equal(im(d), 0)) {
// not pos def
return null;
}
p = c[k]++;
// store L(k,k) = sqrt(d) in column k
lindex[p] = k;
lvalues[p] = sqrt(d);
}
// finalize L
lptr[n] = cp[n];
// P matrix
let P;
// check we need to calculate P
if (pinv) {
// P arrays
const pvalues = [];
const pindex = [];
const pptr = [];
// create P matrix
for (p = 0; p < n; p++) {
// initialize ptr (one value per column)
pptr[p] = p;
// index (apply permutation vector)
pindex.push(pinv[p]);
// value 1
pvalues.push(1);
}
// update ptr
pptr[n] = n;
// P
P = new SparseMatrix({
values: pvalues,
index: pindex,
ptr: pptr,
size: [n, n]
});
}
// return L & P
return {
L,
P
};
};
});