192 lines
5.4 KiB
JavaScript
192 lines
5.4 KiB
JavaScript
|
"use strict";
|
||
|
|
||
|
Object.defineProperty(exports, "__esModule", {
|
||
|
value: true
|
||
|
});
|
||
|
exports.createLsolveAll = void 0;
|
||
|
var _factory = require("../../../utils/factory.js");
|
||
|
var _solveValidation = require("./utils/solveValidation.js");
|
||
|
const name = 'lsolveAll';
|
||
|
const dependencies = ['typed', 'matrix', 'divideScalar', 'multiplyScalar', 'subtractScalar', 'equalScalar', 'DenseMatrix'];
|
||
|
const createLsolveAll = exports.createLsolveAll = /* #__PURE__ */(0, _factory.factory)(name, dependencies, _ref => {
|
||
|
let {
|
||
|
typed,
|
||
|
matrix,
|
||
|
divideScalar,
|
||
|
multiplyScalar,
|
||
|
subtractScalar,
|
||
|
equalScalar,
|
||
|
DenseMatrix
|
||
|
} = _ref;
|
||
|
const solveValidation = (0, _solveValidation.createSolveValidation)({
|
||
|
DenseMatrix
|
||
|
});
|
||
|
|
||
|
/**
|
||
|
* Finds all solutions of a linear equation system by forwards substitution. Matrix must be a lower triangular matrix.
|
||
|
*
|
||
|
* `L * x = b`
|
||
|
*
|
||
|
* Syntax:
|
||
|
*
|
||
|
* math.lsolveAll(L, b)
|
||
|
*
|
||
|
* Examples:
|
||
|
*
|
||
|
* const a = [[-2, 3], [2, 1]]
|
||
|
* const b = [11, 9]
|
||
|
* const x = lsolveAll(a, b) // [ [[-5.5], [20]] ]
|
||
|
*
|
||
|
* See also:
|
||
|
*
|
||
|
* lsolve, lup, slu, usolve, lusolve
|
||
|
*
|
||
|
* @param {Matrix, Array} L A N x N matrix or array (L)
|
||
|
* @param {Matrix, Array} b A column vector with the b values
|
||
|
*
|
||
|
* @return {DenseMatrix[] | Array[]} An array of affine-independent column vectors (x) that solve the linear system
|
||
|
*/
|
||
|
return typed(name, {
|
||
|
'SparseMatrix, Array | Matrix': function (m, b) {
|
||
|
return _sparseForwardSubstitution(m, b);
|
||
|
},
|
||
|
'DenseMatrix, Array | Matrix': function (m, b) {
|
||
|
return _denseForwardSubstitution(m, b);
|
||
|
},
|
||
|
'Array, Array | Matrix': function (a, b) {
|
||
|
const m = matrix(a);
|
||
|
const R = _denseForwardSubstitution(m, b);
|
||
|
return R.map(r => r.valueOf());
|
||
|
}
|
||
|
});
|
||
|
function _denseForwardSubstitution(m, b_) {
|
||
|
// the algorithm is derived from
|
||
|
// https://www.overleaf.com/read/csvgqdxggyjv
|
||
|
|
||
|
// array of right-hand sides
|
||
|
const B = [solveValidation(m, b_, true)._data.map(e => e[0])];
|
||
|
const M = m._data;
|
||
|
const rows = m._size[0];
|
||
|
const columns = m._size[1];
|
||
|
|
||
|
// loop columns
|
||
|
for (let i = 0; i < columns; i++) {
|
||
|
let L = B.length;
|
||
|
|
||
|
// loop right-hand sides
|
||
|
for (let k = 0; k < L; k++) {
|
||
|
const b = B[k];
|
||
|
if (!equalScalar(M[i][i], 0)) {
|
||
|
// non-singular row
|
||
|
|
||
|
b[i] = divideScalar(b[i], M[i][i]);
|
||
|
for (let j = i + 1; j < columns; j++) {
|
||
|
// b[j] -= b[i] * M[j,i]
|
||
|
b[j] = subtractScalar(b[j], multiplyScalar(b[i], M[j][i]));
|
||
|
}
|
||
|
} else if (!equalScalar(b[i], 0)) {
|
||
|
// singular row, nonzero RHS
|
||
|
|
||
|
if (k === 0) {
|
||
|
// There is no valid solution
|
||
|
return [];
|
||
|
} else {
|
||
|
// This RHS is invalid but other solutions may still exist
|
||
|
B.splice(k, 1);
|
||
|
k -= 1;
|
||
|
L -= 1;
|
||
|
}
|
||
|
} else if (k === 0) {
|
||
|
// singular row, RHS is zero
|
||
|
|
||
|
const bNew = [...b];
|
||
|
bNew[i] = 1;
|
||
|
for (let j = i + 1; j < columns; j++) {
|
||
|
bNew[j] = subtractScalar(bNew[j], M[j][i]);
|
||
|
}
|
||
|
B.push(bNew);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return B.map(x => new DenseMatrix({
|
||
|
data: x.map(e => [e]),
|
||
|
size: [rows, 1]
|
||
|
}));
|
||
|
}
|
||
|
function _sparseForwardSubstitution(m, b_) {
|
||
|
// array of right-hand sides
|
||
|
const B = [solveValidation(m, b_, true)._data.map(e => e[0])];
|
||
|
const rows = m._size[0];
|
||
|
const columns = m._size[1];
|
||
|
const values = m._values;
|
||
|
const index = m._index;
|
||
|
const ptr = m._ptr;
|
||
|
|
||
|
// loop columns
|
||
|
for (let i = 0; i < columns; i++) {
|
||
|
let L = B.length;
|
||
|
|
||
|
// loop right-hand sides
|
||
|
for (let k = 0; k < L; k++) {
|
||
|
const b = B[k];
|
||
|
|
||
|
// values & indices (column i)
|
||
|
const iValues = [];
|
||
|
const iIndices = [];
|
||
|
|
||
|
// first & last indeces in column
|
||
|
const firstIndex = ptr[i];
|
||
|
const lastIndex = ptr[i + 1];
|
||
|
|
||
|
// find the value at [i, i]
|
||
|
let Mii = 0;
|
||
|
for (let j = firstIndex; j < lastIndex; j++) {
|
||
|
const J = index[j];
|
||
|
// check row
|
||
|
if (J === i) {
|
||
|
Mii = values[j];
|
||
|
} else if (J > i) {
|
||
|
// store lower triangular
|
||
|
iValues.push(values[j]);
|
||
|
iIndices.push(J);
|
||
|
}
|
||
|
}
|
||
|
if (!equalScalar(Mii, 0)) {
|
||
|
// non-singular row
|
||
|
|
||
|
b[i] = divideScalar(b[i], Mii);
|
||
|
for (let j = 0, lastIndex = iIndices.length; j < lastIndex; j++) {
|
||
|
const J = iIndices[j];
|
||
|
b[J] = subtractScalar(b[J], multiplyScalar(b[i], iValues[j]));
|
||
|
}
|
||
|
} else if (!equalScalar(b[i], 0)) {
|
||
|
// singular row, nonzero RHS
|
||
|
|
||
|
if (k === 0) {
|
||
|
// There is no valid solution
|
||
|
return [];
|
||
|
} else {
|
||
|
// This RHS is invalid but other solutions may still exist
|
||
|
B.splice(k, 1);
|
||
|
k -= 1;
|
||
|
L -= 1;
|
||
|
}
|
||
|
} else if (k === 0) {
|
||
|
// singular row, RHS is zero
|
||
|
|
||
|
const bNew = [...b];
|
||
|
bNew[i] = 1;
|
||
|
for (let j = 0, lastIndex = iIndices.length; j < lastIndex; j++) {
|
||
|
const J = iIndices[j];
|
||
|
bNew[J] = subtractScalar(bNew[J], iValues[j]);
|
||
|
}
|
||
|
B.push(bNew);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return B.map(x => new DenseMatrix({
|
||
|
data: x.map(e => [e]),
|
||
|
size: [rows, 1]
|
||
|
}));
|
||
|
}
|
||
|
});
|