jiangchengfeiyi-xiaochengxu/node_modules/mathjs/lib/esm/function/matrix/pinv.js

179 lines
5.2 KiB
JavaScript
Raw Normal View History

2025-01-02 03:13:50 +00:00
import { isMatrix } from '../../utils/is.js';
import { arraySize } from '../../utils/array.js';
import { factory } from '../../utils/factory.js';
import { format } from '../../utils/string.js';
import { clone } from '../../utils/object.js';
var name = 'pinv';
var dependencies = ['typed', 'matrix', 'inv', 'deepEqual', 'equal', 'dotDivide', 'dot', 'ctranspose', 'divideScalar', 'multiply', 'add', 'Complex'];
export var createPinv = /* #__PURE__ */factory(name, dependencies, _ref => {
var {
typed,
matrix,
inv,
deepEqual,
equal,
dotDivide,
dot,
ctranspose,
divideScalar,
multiply,
add,
Complex
} = _ref;
/**
* Calculate the MoorePenrose inverse of a matrix.
*
* Syntax:
*
* math.pinv(x)
*
* Examples:
*
* math.pinv([[1, 2], [3, 4]]) // returns [[-2, 1], [1.5, -0.5]]
* math.pinv([[1, 0], [0, 1], [0, 1]]) // returns [[1, 0, 0], [0, 0.5, 0.5]]
* math.pinv(4) // returns 0.25
*
* See also:
*
* inv
*
* @param {number | Complex | Array | Matrix} x Matrix to be inversed
* @return {number | Complex | Array | Matrix} The inverse of `x`.
*/
return typed(name, {
'Array | Matrix': function Array__Matrix(x) {
var size = isMatrix(x) ? x.size() : arraySize(x);
switch (size.length) {
case 1:
// vector
if (_isZeros(x)) return ctranspose(x); // null vector
if (size[0] === 1) {
return inv(x); // invertible matrix
} else {
return dotDivide(ctranspose(x), dot(x, x));
}
case 2:
// two dimensional array
{
if (_isZeros(x)) return ctranspose(x); // zero matrixx
var rows = size[0];
var cols = size[1];
if (rows === cols) {
try {
return inv(x); // invertible matrix
} catch (err) {
if (err instanceof Error && err.message.match(/Cannot calculate inverse, determinant is zero/)) {
// Expected
} else {
throw err;
}
}
}
if (isMatrix(x)) {
return matrix(_pinv(x.valueOf(), rows, cols), x.storage());
} else {
// return an Array
return _pinv(x, rows, cols);
}
}
default:
// multi dimensional array
throw new RangeError('Matrix must be two dimensional ' + '(size: ' + format(size) + ')');
}
},
any: function any(x) {
// scalar
if (equal(x, 0)) return clone(x); // zero
return divideScalar(1, x);
}
});
/**
* Calculate the MoorePenrose inverse of a matrix
* @param {Array[]} mat A matrix
* @param {number} rows Number of rows
* @param {number} cols Number of columns
* @return {Array[]} pinv Pseudoinverse matrix
* @private
*/
function _pinv(mat, rows, cols) {
var {
C,
F
} = _rankFact(mat, rows, cols); // TODO: Use SVD instead (may improve precision)
var Cpinv = multiply(inv(multiply(ctranspose(C), C)), ctranspose(C));
var Fpinv = multiply(ctranspose(F), inv(multiply(F, ctranspose(F))));
return multiply(Fpinv, Cpinv);
}
/**
* Calculate the reduced row echelon form of a matrix
*
* Modified from https://rosettacode.org/wiki/Reduced_row_echelon_form
*
* @param {Array[]} mat A matrix
* @param {number} rows Number of rows
* @param {number} cols Number of columns
* @return {Array[]} Reduced row echelon form
* @private
*/
function _rref(mat, rows, cols) {
var M = clone(mat);
var lead = 0;
for (var r = 0; r < rows; r++) {
if (cols <= lead) {
return M;
}
var i = r;
while (_isZero(M[i][lead])) {
i++;
if (rows === i) {
i = r;
lead++;
if (cols === lead) {
return M;
}
}
}
[M[i], M[r]] = [M[r], M[i]];
var val = M[r][lead];
for (var j = 0; j < cols; j++) {
M[r][j] = dotDivide(M[r][j], val);
}
for (var _i = 0; _i < rows; _i++) {
if (_i === r) continue;
val = M[_i][lead];
for (var _j = 0; _j < cols; _j++) {
M[_i][_j] = add(M[_i][_j], multiply(-1, multiply(val, M[r][_j])));
}
}
lead++;
}
return M;
}
/**
* Calculate the rank factorization of a matrix
*
* @param {Array[]} mat A matrix (M)
* @param {number} rows Number of rows
* @param {number} cols Number of columns
* @return {{C: Array, F: Array}} rank factorization where M = C F
* @private
*/
function _rankFact(mat, rows, cols) {
var rref = _rref(mat, rows, cols);
var C = mat.map((_, i) => _.filter((_, j) => j < rows && !_isZero(dot(rref[j], rref[j]))));
var F = rref.filter((_, i) => !_isZero(dot(rref[i], rref[i])));
return {
C,
F
};
}
function _isZero(x) {
return equal(add(x, Complex(1, 1)), add(0, Complex(1, 1)));
}
function _isZeros(arr) {
return deepEqual(add(arr, Complex(1, 1)), add(multiply(arr, 0), Complex(1, 1)));
}
});